scholarly journals Radiofrequency Ablation of Parathyroid Glands to Treat a Patient With Hypercalcemia Caused by a Novel Inactivating Mutation in CaSR

2022 ◽  
Vol 12 ◽  
Author(s):  
Yu Hao ◽  
Zhikai Lei ◽  
Nanjing Shi ◽  
Lingying Yu ◽  
Weiqin Ji ◽  
...  

ObjectiveWe identified a novel inactivating mutation in the calcium-sensing receptor (CaSR) gene in a patient with refractory hypocalciuric hypercalcemia and analyzed its function. The effectiveness of radiofrequency ablation of the parathyroid glands to treat hypercalcemia caused by this mutation was explored.MethodsClinical data of patients before and after radiofrequency ablation were retrospectively analyzed. The CaSR mutation (D99N) found in the patient was studied in cell lines. HEK-293 cells were transfected with plasmids containing wild-type (WT) or mutant CaSR genes (D99N and W718X). Expression levels of the respective CaSR proteins were measured, and their functions were assessed by examining the effect of NPS R-568 (a CaSR agonist) on intracellular Ca2+ oscillations and that of exogenous parathyroid hormone (PTH) on intracellular cyclic adenosine monophosphate (cAMP) levels.ResultsThe effectiveness of pharmacological treatment was poor, whereas radiofrequency ablation of the parathyroid glands resulted in controlled blood calcium and PTH levels in the patient. In cell lines, upon NPS R-568 administration, the amplitude of intracellular Ca2+ oscillations in the D99N group was lower than that in the WT group and higher than that in the W718X group. Upon administration of PTH, intracellular cAMP levels in the D99N group were higher than those in the WT group and lower than those in the W718X group.ConclusionThe homozygous mutation D99N reduced CaSR activity and caused more severe hypocalciuric hypercalcemia. For patients with this type of hypercalcemia and poor response to pharmacological treatments, radiofrequency ablation of the parathyroid glands may be a suitable treatment option.

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1554
Author(s):  
Dabin Choi ◽  
Wesuk Kang ◽  
Taesun Park

The critical roles of keratinocytes and resident mast cells in skin allergy and inflammation have been highlighted in many studies. Cyclic adenosine monophosphate (cAMP), the intracellular second messenger, has also recently emerged as a target molecule in the immune reaction underlying inflammatory skin conditions. Here, we investigated whether undecane, a naturally occurring plant compound, has anti-allergic and anti-inflammatory activities on sensitized rat basophilic leukemia (RBL-2H3) mast cells and HaCaT keratinocytes and we further explored the potential involvement of the cAMP as a molecular target for undecane. We confirmed that undecane increased intracellular cAMP levels in mast cells and keratinocytes. In sensitized mast cells, undecane inhibited degranulation and the secretion of histamine and tumor necrosis factor α (TNF-α). In addition, in sensitized keratinocytes, undecane reversed the increased levels of p38 phosphorylation, nuclear factor kappaB (NF-κB) transcriptional activity and target cytokine/chemokine genes, including thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and interleukin-8 (IL-8). These results suggest that undecane may be useful for the prevention or treatment of skin inflammatory disorders, such as atopic dermatitis, and other allergic diseases.


2019 ◽  
Vol 101 (4) ◽  
pp. 813-822 ◽  
Author(s):  
Bronwen R Herbert ◽  
Danijela Markovic ◽  
Ektoras Georgiou ◽  
Pei F Lai ◽  
Natasha Singh ◽  
...  

Abstract Although progesterone (P4) supplementation is the most widely used therapy for the prevention of preterm labor (PTL), reports of its clinical efficacy have been conflicting. We have previously shown that the anti-inflammatory effects of P4 can be enhanced by increasing intracellular cyclic adenosine monophosphate (cAMP) levels in primary human myometrial cells. Here, we have examined whether adding aminophylline (Am), a non-specific phosphodiesterase inhibitor that increases intracellular cAMP levels, to P4 might improve its efficacy using in vivo and in vitro models of PTL. In a mouse model of lipopolysaccharide (LPS)-induced PTL, we found that the combination of P4 and Am delayed the onset of LPS-induced PTL, while the same dose of P4 and Am alone had no effect. Pup survival was not improved by either agent alone or in combination. Myometrial prolabor and inflammatory cytokine gene expression was reduced, but the reduction was similar in P4 and P4/Am treated mice. There was no effect of the combination of P4 and Am on an ex vivo assessment of myometrial contractility. In human myometrial cells and myometrial tissue explants, we found that the combination had marked anti-inflammatory effects, reducing cytokine and COX-2 mRNA and protein levels to a greater extent than either agent alone. These data suggest that the combination of P4 and Am has a more potent anti-inflammatory effect than either agent alone and may be an effective combination in women at high-risk of PTL.


2011 ◽  
Vol 38 (6) ◽  
pp. 1095-1103 ◽  
Author(s):  
YANGMING XIAO ◽  
WEIJING HE ◽  
I. JON RUSSELL

Objective.To determine the genotype frequencies of ß2-adrenergic receptor (ß2AR) gene polymorphisms (Gly16Arg, Glu27Gln) in patients with fibromyalgia syndrome (FM) by comparison with unrelated healthy controls. We sought any clinical association with these polymorphisms and determined whether the polymorphisms would associate with a biologic guanosine protein-coupled stimulator receptor (Gs) dysfunction in FM.Methods.Study subjects included 97 clinically characterized patients with FM and 59 controls. The ß2AR polymorphisms at codons 16 and 27 were determined using polymerase chain reaction-restriction fragment length polymorphism. The Gs functions of peripheral blood mononuclear cells (PBMC) were tested using isoproterenol (ISO) as the adrenergic Gs ligand and measuring intracellular cyclic adenosine monophosphate (cAMP) levels.Results.The frequency of the ß2AR gene polymorphism Gly16Arg in FM (43.5%) was significantly lower than in controls (63.2%), suggesting that this genotype might have some effect on the risk of developing FM. The only clinical association in FM was with sleep dysfunction. Patients with FM who carried the ß2AR polymorphism Arg16Arg also exhibited significantly lower PBMC basal cAMP levels (p < 0.05) and lower ISO-stimulated cAMP levels (p < 0.05) than FM carrying Gly16Gly or Gly16Arg.Conclusion.This confirms a relationship between ß2AR polymorphism and FM. It is the first study to demonstrate ß2AR polymorphism-related differences in intracellular cAMP responses of FM PBMC after ß2AR stimulationin vitro. These findings may explain some of the differences in responsiveness of FM subgroups to the adrenergic agonist medications currently approved for FM treatment.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 166
Author(s):  
Wonkyoung Cho ◽  
SeoYeon Kim ◽  
Myeongsook Jeong ◽  
Young Mi Park

Adipogenesis is a crucial cellular process that contributes to the expansion of adipose tissue in obesity. Shockwaves are mechanical stimuli that transmit signals to cause biological responses. The purpose of this study is to evaluate the effects of shockwaves on adipogenesis. We treated 3T3L-1 cells and human primary preadipocytes for differentiation with or without shockwaves. Western blots and quantitative real-time reverse transcriptase PCR (qRT-PCR) for adipocyte markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPα) were performed. Extracellular adenosine triphosphate (ATP) and intracellular cyclic adenosine monophosphate (cAMP) levels, which are known to affect adipocyte differentiation, were measured. Shockwave treatment decreased intracellular lipid droplet accumulation in primary human preadipocytes and 3T3-L1 cells after 11–12 days of differentiation. Levels of key adipogenic transcriptional factors PPARγ and/or C/EBPα were lower in shockwave-treated human primary preadipocytes and 3T3L-1 cells after 12–13 days of differentiation than in shockwave-untreated cells. Shockwave treatment induced release of extracellular ATP from preadipocytes and decreased intracellular cAMP levels. Shockwave-treated preadipocytes showed a higher level of β-catenin and less PPARγ expression than shockwave-untreated cells. Supplementation with 8-bromo-cAMP analog after shockwave treatment rescued adipocyte differentiation by preventing the effect of shockwaves on β-catenin, Wnt10b mRNA, and PPARγ expression. Low-energy shockwaves suppressed adipocyte differentiation by decreasing PPARγ. Our study suggests an insight into potential uses of shockwave-treatment for obesity.


2020 ◽  
Vol 17 (4) ◽  
pp. 595-602
Author(s):  
Nguyen Thi Mong Diep ◽  
Nguyen Thi Bich Hang ◽  
Nguyen Le Cong Minh ◽  
Tran Thanh Son ◽  
Nguyen Thuy Duong

Fluoxetine (FLX), a widely used antidepressant primarily acting as a selective serotonin reuptake inhibitor, has been shown to exhibit other mechanisms of action in various cell types. Cyclic adenosine monophosphate (cAMP) is a second messenger used for intracellular signal induction. Cyclic AMP is a nucleotide synthesized within the cell from adenosine triphosphate by the adenylyl cyclase enzyme, and is inactivated enzymatically to 5′AMP by hydroxylation with a group of enzymes called phosphodiesterase. The aim of this study was to determine the effects of FLX on MLTC-1 Leydig cells on intracellular cyclic AMP response to forskolin (FSK). MLTC-1 cells were incubated at 37°C in media supplemented with or without different doses of FLX (0, 0.156, 0.3125, 0.625, 1.25, 2.5, 5 and 10 µM). We then looked for how the concentration of FLX for a short-time (2 hours) and a long-time (24 hours) affects the concentration of intracellular cyclic AMP response to FSK and ATP levels on MLTC-1 cells. Our results show that FLX decreased the intracellular cAMP response to FSK depending on FLX concentration. FLX decreased significantly cAMP levels only at 10 µM after 2 hours of incubation but after 24 hours of incubation FLX caused an effect on cAMP levels at 5 µM and at 10 µM. Moreover, as expected, FLX also caused a decline of steroidogenesis, which is under the control of cAMP and ATP levels in the cells. Taken together, these findings demonstrate that the inhibition of cAMP synthesis by FLX is dose-dependent, and that FLX also inhibited hormone-induced steroidogenesis in MLTC-1 cells.


2000 ◽  
pp. 286-293 ◽  
Author(s):  
G Villone ◽  
G De Vita ◽  
P Chieffi ◽  
A Picascia ◽  
R Stanzione ◽  
...  

OBJECTIVE: The aim of this study was to investigate: (i) whether a persistent increase of cAMP interferes with the proliferation of transformed thyroid cells, and (ii) whether the degree of malignancy is correlated with the sensitivity to a transient and/or sustained increase in intracellular cAMP levels. DESIGN AND METHODS: To address these questions we used thyroid cell lines transformed with E1A oncogene from adenoviruses 5 (PC E1A cell line) or 2 (PC HE4 cell line), or infected with the polyoma murine leukemia virus (PC PyMLV cell line) carrying the middle T gene of the polyoma virus, or, finally, expressing both E1A and PyMLV. These cell lines present various degrees of malignancy: PC EIA and PC HE4 cells are not tumorigenic; PC PyMLV cells induce non-invasive tumors after a long latency period; and PC EIA+PyMLV cells are highly tumorigenic. RESULTS AND CONCLUSIONS: Thyroid cell proliferation required the transient increase of intracellular cAMP levels, while persistent elevation of cAMP blocked the proliferation of normal thyroid PC Cl 3 cells and of PC Cl 3 cells transformed by a variety of different oncogenes. In addition, sustained levels of cAMP induced apoptosis in cells carrying the adenovirus EIA oncogene, but not in cells transformed with other oncogenes or in the wild-type PC Cl 3 cells. Furthermore, middle T gene of the polyoma virus seemed to afford protection only from apoptosis induced by cAMP when middle T is present in thyroid cells along with the E1A gene.


2019 ◽  
Vol 9 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Tanja Diana ◽  
Paul D. Olivo ◽  
Yie-Hwa Chang ◽  
Christian Wüster ◽  
Michael Kanitz ◽  
...  

Objective: Stimulating thyrotropin-receptor antibodies (TSAb) cause Graves’ disease (GD). We tested a novel homogeneous fluorescent 3′,5′ cyclic adenine monophosphate (cAMP) assay for the detection of TSAb in a bioassay. Methods: Chinese hamster ovary (CHO) cell lines expressing either a chimeric (MC4) or wild-type (WT) TSH-R were incubated with the adenyl cyclase activator forskolin, a human TSAb monoclonal antibody (M22), and with sera from GD patients. Intracellular cAMP levels were measured using a Bridge-It® cAMP assay, and the results were compared with a luciferase-based bioassay. Results: Both cell lines were stimulated with forskolin concentrations (0.006–200 µM) in a dose-dependent manner. The linear range in the MC4 and WT cells was 0.8–25 and 3.1–50 µM, respectively. Levels of cAMP and luciferase in forskolin-treated MC4 and WT cells were positively correlated (r = 0.91 and 0.84, both p < 0.001). The 50% maximum stimulatory concentration of forskolin was more than 16-fold higher for the CHO-WT cells than the CHO-MC4 cells in the cAMP assay and 4-fold higher in the luciferase assay. Incubation of both cell lines with M22 (0.006–50 ng/mL) resulted in a dose-dependent increase in cAMP levels with linear ranges for the MC4 and WT cells of 0.8–12.5 and 0.2–3.125 ng/mL, respectively. Comparison of cAMP and luciferase levels in M22-treated MC4 and WT cells also showed a positive correlation (r = 0.88, p < 0.001 and 0.75, p = 0.002). A positive correlation was also noted when using patient samples (r = 0.96, p < 0.001) that were all TSH-R-Ab binding assay positive. Conclusion: The novel, rapid, simple-to-perform cAMP assay provides TSAb-mediated stimulatory results comparable to a luciferase-based bioassay.


1987 ◽  
Vol 252 (2) ◽  
pp. E197-E201 ◽  
Author(s):  
M. E. Weaver ◽  
J. Morrissey ◽  
C. McConkey ◽  
S. Goldfarb ◽  
E. Slatopolsky ◽  
...  

WR-2721 [S-2-(3-aminopropylamino)ethylphosphorothioic acid] is a chemoprotective and radioprotective agent that has been shown to lower serum calcium in dogs and in humans. This is secondary both to impaired release of Ca2+ from bone and diminished secretion of parathyroid hormone (PTH) from parathyroid glands. Because cAMP plays a role in the regulation of PTH secretion and WR-2721 has been shown to lower cAMP levels in radiated mouse spleen, we investigated the effects of WR-2721 on cAMP production in dispersed bovine parathyroid cells. Additionally, we studied the adenylate cyclase in plasma membranes from normal bovine parathyroid glands after exposure to WR-2721. With parathyroid cells incubated at 0.5 mM Ca2+, addition of WR-2721 in concentrations ranging from 0.02 to 2.0 mM resulted in a progressive decrease in intracellular cAMP (42-50%, respectively). In plasma membranes of bovine parathyroid cells a dose-dependent decrease in adenylate cyclase activity was noted. Inhibition of the cyclase was seen over a wide range of Mg2+ concentrations (2.5-40 mM). WR-2721 inhibited both basal and NaF, Gpp(NH)p, forskolin, and pertussin toxin-stimulated adenylate cyclase. These data suggest that WR-2721 inhibits the activity of parathyroid adenylate cyclase.


2019 ◽  
Vol 3 (2) ◽  
pp. 59-71 ◽  
Author(s):  
Mais Bassam Alashqar

   Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases. AD is characterized by immune dysregulation and barrier impairment, while psoriasis is by immune dysfunction and resultant keratinocyte hyper-proliferation.    Caffeine has shown effective in ameliorating the symptoms of both diseases, but it is not conclusive through which pathways. The aim of this study was to provide a detailed discussion of available work on this topic, as well as known modes of action of caffeine that are relevant to these two conditions.    After an extensive review of the literature, we found that both diseases have decreased intracellular cyclic adenosine monophosphate (cAMP) levels in cutaneous leukocytes, so it is very likely that being a methylxanthine, and hence a phosphodiesterase (PDE) inhibitor, caffeine raises intracellular cAMP levels, which suppresses inflammatory pathways and potentiates anti-inflammatory ones. Moreover, caffeine is known to be an ATR (ataxia-telangiectasia mutated) kinase and an ATM (ATM- and Rad3-Related) kinase inhibitor, which promotes prompt apoptosis of damaged cells. It was also found to have anti-necrotic effects in reactive oxygen species (ROS)-damaged cells. These pro-apoptotic and anti-necrotic properties may also be reducing the inflammation. Finally, caffeine's metabolites have shown antioxidising effects against ROS, which certainly would reduce inflammation caused by lipid peroxidation, DNA damage and organelle destruction.    We find that caffeine acts in a number of ways to improve symptoms of inflammation and that it is an effective adjunct to therapy in AD and psoriasis.


2022 ◽  
Vol 6 (1) ◽  
pp. 248-258
Author(s):  
Jan Zlamal ◽  
Karina Althaus ◽  
Hisham Jaffal ◽  
Helene Häberle ◽  
Lisann Pelzl ◽  
...  

Abstract Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. The exact mechanisms of COVID-19-associated hypercoagulopathy, however, remain elusive. Recently, we observed that platelets (PLTs) from patients with severe COVID-19 infection express high levels of procoagulant markers, which were found to be associated with increased risk for thrombosis. In the current study, we investigated the time course as well as the mechanisms leading to procoagulant PLTs in COVID-19. Our study demonstrates the presence of PLT-reactive IgG antibodies that induce marked changes in PLTs in terms of increased inner-mitochondrial transmembrane potential (Δψ) depolarization, phosphatidylserine (PS) externalization, and P-selectin expression. The IgG-induced procoagulant PLTs and increased thrombus formation were mediated by ligation of PLT Fc-γ RIIA (FcγRIIA). In addition, contents of calcium and cyclic-adenosine-monophosphate (cAMP) in PLTs were identified to play a central role in antibody-induced procoagulant PLT formation. Most importantly, antibody-induced procoagulant events, as well as increased thrombus formation in severe COVID-19, were inhibited by Iloprost, a clinically approved therapeutic agent that increases the intracellular cAMP levels in PLTs. Our data indicate that upregulation of cAMP could be a potential therapeutic target to prevent antibody-mediated coagulopathy in COVID-19 disease.


Sign in / Sign up

Export Citation Format

Share Document