scholarly journals Intelligent Control on Urban Natural Gas Supply Using a Deep-Learning-Assisted Pipeline Dispatch Technique

2022 ◽  
Vol 9 ◽  
Author(s):  
Tao Zhang ◽  
Hua Bai ◽  
Shuyu Sun

Natural gas has been attracting increasing attentions all around the world as a relatively cleaner energy resource compared with coal and crude oil. Except for the direct consumption as fuel, electricity generation is now another environmentally-friendly utilization of natural gas, which makes it more favorable as the energy supply for urban areas. Pipeline transportation is the main approach connecting the natural gas production field and urban areas thanks to the safety and economic reasons. In this paper, an intelligent pipeline dispatch technique is proposed using deep learning methods to predict the change of energy supply to the urban areas as a consequence of compressor operations. Practical operation data is collected and prepared for the training and validation of deep learning models, and the accelerated predictions can help make controlling plans regarding compressor operations to meet the requirement in urban natural gas supply. The proposed deep neutral network is equipped with self-adaptability, which enables the general adaption on various temporal compressor conditions including failure and maintenance.

2021 ◽  
Vol 61 (2) ◽  
pp. 325
Author(s):  
Barry E. Bradshaw ◽  
Meredith L. Orr ◽  
Tom Bernecker

Australia is endowed with abundant, high-quality energy commodity resources, which provide reliable energy for domestic use and underpin our status as a major global energy provider. Australia has the world’s largest economic uranium resources, the third largest coal resources and substantial conventional and unconventional natural gas resources. Since 2015, Australia’s gas production has grown rapidly. This growth has been driven by a series of new liquefied natural gas (LNG) projects on the North West Shelf, together with established coal seam gas projects in Queensland. Results from Geoscience Australia’s 2021 edition of Australia’s energy commodity resources assessment highlight Australia’s endowment with abundant and widely distributed energy commodity resources. Knowledge of Australia’s existing and untapped energy resource potential provides industry and policy makers with a trusted source of data to compare and understand the value of these key energy commodities to domestic and world markets. A key component of Australia’s low emissions future will be the development of a hydrogen industry, with hydrogen being produced either through electrolysis of water using renewable energy resources (‘green’ hydrogen), or manufactured from natural gas or coal gasification, with carbon capture and storage of the co-produced carbon dioxide (‘blue’ hydrogen). Australia’s endowment with abundant natural gas resources will be a key enabler for our transition to a low emissions future through providing economically competitive feedstock for ‘blue’ hydrogen.


2007 ◽  
Vol 18 (3-4) ◽  
pp. 363-372
Author(s):  
Funso A. Akeredolu ◽  
Jacob A. Sonibare

There exists a wide energy supply/demand gap in Nigeria. The local generation of electricity meets only 31% of the demand of 10000 MW. By contrast, only 39.6% of the total installed capacity for electricity generation is achieved, owing to aging infrastructure, etc. The energy demand/supply pattern and infrastructure critically reviewed thus suggested the need to increase the electricity generation capacity. Furthermore, Nigeria flares 77% of her associated natural gas. Apart from the environmental penalties that flaring represents, in monetary terms, over the 110 years' life of Nigeria's gas reserves, a conservative estimate of the cost of the gas so-flared was $330 billion (based on $20/barrel average price of crude). It was safely inferred that the way forward in meeting the country's energy demand should include a strong element of gas utilization. In previous publications by this group, it was established that while domestic cooking could reduce the flared gas by about 5.4%, a cohesive policy on associated gas use for electricity generation could eliminate gas flaring. For domestic utilization of the associated gas, burner design and safety concerns were identified as the key challenges to overcome. The paper reports the effectiveness of odorizers in leakage detection/ prevention by the local consumers. It also discusses the issue of prevention of gas explosions. The previous cases of gas accidents were reviewed. The safety approaches proffered in the paper identified the relevant areas of research for safe delivery and consumption of natural gas in Nigeria.


Subject Energy diversification efforts. Significance The El Nino weather phenomenon has laid bare the vulnerabilities of South America's dependence on hydropower. Gas has been the primary back-up, and liquefied natural gas (LNG) import capacity a strategic necessity (one which the northern part of the continent lacks). However, a recovery in Argentine gas production could eventually change the region's current gas balance, while the growth of renewables offers a new, indigenous, low-cost energy source. Impacts Investment in LNG import capacity and gas storage will continue. However, facilities face the threat of low utilisation as renewables capacity and domestic gas production increases. As one of the cheapest forms of electricity generation with a large amount of unexploited resource, hydropower will expand. States will gradually look towards other forms of system flexibility and grid resilience.


2021 ◽  
Vol 6 (1) ◽  
pp. 63-74
Author(s):  
Davor Dujak ◽  
◽  
Dario Šebalj ◽  
Karolina Kolinska

Natural gas is third most used fossil fuel and energy resource in the world, with significant increase in its consumption over last 20 years. As a consequence, research in optimisation of its supply chain processes are becoming increasingly significant. This paper aims to develop conceptual framework for material and information flow optimisation in natural gas supply chain and suggests its future use. Based on previous researches on mapping natural gas supply chain, bullwhip effect in natural gas supply chain and simulation models in natural gas supply chain, paper proposes new conceptual framework for material and information flow optimisation in natural gas supply chain. Results of implementation of this framework in natural gas supply chain of Republic of Croatia are presented with all suggestions for improvement explained. Keywords: natural gas supply chain, simulation model, bullwhip effect


2020 ◽  
Vol 35 (4) ◽  
pp. 93-101
Author(s):  
Ivan Smajla ◽  
Romana Crneković ◽  
Daria Karasalihović Sedlar ◽  
Filip Božić

This paper analyzes the possible role of liquefied natural gas (LNG) in the region in reducing carbon dioxide (CO2) emissions by replacing a certain part of solid fossil fuels. Increasing natural gas consumption, declining North Sea natural gas reserves and increased natural gas production costs in Europe combined have created new opportunities for LNG in Europe. The Energy Strategy of Croatia is focused on intensifying the transit position for natural gas that could establish Croatia as a primary LNG market for countries from the region, which shows that the Energy Strategy supports LNG. Concerning LNG’s introduction into the regional gas market, this paper analyses the possibility of establishing a regional gas hub. The region in this paper includes the following countries: Croatia, Serbia, Bosnia and Herzegovina, Hungary, Slovenia, and North Macedonia. On the other hand, the observed markets are not organized and sufficiently liquid, which is a crucial precondition for hub establishment. In order to decrease the region’s dependence on pipeline natural gas, it is necessary to construct gas interconnections between Croatia – Serbia, Croatia – Bosnia and Herzegovina and Serbia – North Macedonia. With the mentioned interconnections, the region could achieve greater security of natural gas supply. This paper discusses the possibility of utilizing the full capacity of a LNG terminal as a source of natural gas supply for the purpose of replacing solid fossil fuels in the region’s primary energy consumption. By replacing solid fossil fuels with natural gas, it is possible to achieve significant savings on CO2 emissions, which contributes towards a green and sustainable future.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2913
Author(s):  
Yassine Rqiq ◽  
Jesus Beyza ◽  
Jose M. Yusta ◽  
Ricardo Bolado-Lavin

The European Union (EU) is highly dependent on external natural gas supplies and has experienced severe gas cuts in the past, mainly driven by the technical complexity of the high-pressure natural gas system and political instability in some of the supplier countries. Declining indigenous natural gas production and growing demand for gas in the EU has encouraged investments in cross-border transmission capacity to increase the sharing of resources between the member states, particularly in the aftermath of the Russia–Ukraine gas crisis in January 2009. This article models the EU interconnected natural gas system to assess the impact of investments in the gas transmission network by comparing the performance of the system for scenarios of 2009 and 2017, using a mathematical optimization approach. The model uses the technical data of the infrastructures, such as production, storage, regasification, and exchange capacity through cross-border pipelines, and proposes an optimal collaborative strategy which ensures the best possible coverage of overall demand. The actual peak demand situations of the extreme cases of 2009 and 2017 are analyzed under hypothetical supply crises caused by geopolitical or commercial disputes. The application of the proposed methodology leads to results which show that the investments made in this system do not decongest the cross-border pipeline network but improve the demand coverage. Countries such as Spain and Italy experience a lower impact on gas supply due to the variety of mechanisms available to cover their demand. Furthermore, the findings prove that cooperation facilitates the supply of demand in crisis situations.


2012 ◽  
Vol 57 (2) ◽  
pp. 425-441
Author(s):  
Maciej Kaliski ◽  
Marcin Krupa ◽  
Andrzej Sikora

Abstract The paper addresses the problem of the forecasting and possible development of gas production from unconventional plays in Poland. As authors underline the potential of Polish shale gas is quite similar to US shales. Due to geological conditions, stage of development, size and location in more urban areas some experts compare Polish shale plays to Marcellus even. Document stated that from geographical and infrastructural points of view one can identify five different directions for export of natural gas surplus from Poland. It is important to notice that currently none of those routes physically exists - it means, that at present there are no infrastructure (or access to such infrastructure) for exporting of the Polish natural gas.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7513
Author(s):  
Shilong Shang ◽  
Lijuan Gu ◽  
Hailong Lu

Natural gas hydrate is considered as a potential energy resource. To develop technologies for the exploitation of natural gas hydrate, several field gas production tests have been carried out in permafrost and continental slope sediments. However, the gas production rates in these tests were still limited, and the low permeability of the hydrate-bearing sediments is identified as one of the crucial factors. Artificial fracturing is proposed to promote gas production rate by improving reservoir permeability. In this research, numerical studies about the effect of fracture length and fluid conductivity on production performance were carried out on an artificially fractured Class 3 hydrate reservoir (where the single hydrate zone is surrounded by an overlaying and underlying hydrate-free zone), in which the equivalent conductivity method was applied to depict the artificial fracture. The results show that artificial fracture can enhance gas production by offering an extra fluid flow channel for the migration of gas released from hydrate dissociation. The effect of fracture length on production is closely related to the time frame of production, and gas production improvement by enlarging the fracture length is observed after a certain production duration. Through the production process, secondary hydrate formation is absent in the fracture, and the high conductivity in the fracture is maintained. The results indicate that the increase in fracture conductivity has a limited effect on enhancing gas production.


2018 ◽  
Vol 55 (5) ◽  
pp. 3-14 ◽  
Author(s):  
L. Zemite ◽  
A. Kutjuns ◽  
I. Bode ◽  
M. Kunickis ◽  
N. Zeltins

Abstract The Latvian natural gas system is interconnected with transmission networks located in Lithuania, Estonia and Russia. Natural gas commercial metering is provided by GMS “Karksi” (Estonia) and by GMS “Kiemenai” (Lithuania). Natural gas is supplied to all larger urban areas in Latvia. Natural gas is supplied to Latvia along the Latvian–Russian pipeline only during the warm period of the year (April–September), and it is accumulated in the underground gas storage facility in Incukalns. During winter, gas from the underground facility is delivered to Latvian customers, as well as transmitted to Estonia and back to Russia. There is also a connection to Lithuania. Out of the gas supply disruption risks that are assessed at different levels, the essential one with a trans-border impact potential consists in the insufficient technical capacity of Incukalns UGS. Given the current technical possibilities, IUGS cannot pass the gas volume required for the Baltic States to compensate the gas supply deficit. The paper performs system recovery analysis after selected critical events. The paper provides a report describing the steps to be followed in order to restore the gas transmission system to normal operation after selected critical events. A very significant region of the power system of Latvia is the central part of Latvia and Riga region, where both of Riga CHPs, as well as Riga HPP, is located. The restoration time of the gas system of Latvia depends on the gravity of the situation and damage in the gas system and may range from several hours to several days.


Sign in / Sign up

Export Citation Format

Share Document