scholarly journals Flow Regimes and Transitions for Two-Phase Flow of R152a During Condensation in a Circular Minichannel

2021 ◽  
Vol 9 ◽  
Author(s):  
Na Liu ◽  
Qian Zhao ◽  
Zhixiang Lan

Two-phase flow regimes were experimentally investigated during the entire condensation process of refrigerant R152a in a circular glass minichannel. The inner and outer diameters of the test minichannel were 0.75 and 1.50 mm. The channel was 500 mm long to allow observation of all the two-phase flow regimes during the condensation process. The experiments used saturation temperatures from 30 to 50°C, a mass flux of 150 kg/(m2·s) and vapor qualities from 0 to 1. The annular, intermittent and bubbly flow regimes were observed for the experimental conditions in the study. The absence of the stratified flow regime shows that the gravitational effect is no longer dominant in the minichannel for these conditions. Vapor-liquid interfacial waves, liquid bridge formation and vapor core breakage were observed in the minichannel. Quantitative measurements of flow regime transition locations were carried out in the present study. The experiments also showed the effects of the saturation temperature and the cooling water mass flow rate on flow regime transitions. The results show that the annular flow range decreases and the intermittent and bubbly flow ranges change little with increasing saturation temperature. The cooling water mass flow rate ranging from 38.3 kg/h to 113.8 kg/h had little effect on the flow regime transitions.

Author(s):  
Quanyao Ren ◽  
Wenxiong Zhou ◽  
Liangming Pan ◽  
Hang Liu ◽  
Bin Yu ◽  
...  

Traditionally, the flow regime in two phase flow in rod bundles are considered in a global sense by the visualization. However, a sub-channel flow regime is required to understand and model the two phase flow structures in rod bundles. In this work, a sub-channel impedance meter was designed to get the dynamic feature in the sub-channels, which was applied to identify the sub-channel flow regime by the fast search and finding peaks of the cumulative probability distribution functions (CPDFs) objectively. In the present study, five flow regimes, namely bubbly flow, quasi-cap bubbly flow, quasi-slug flow, cap-turbulent flow and churn-turbulent flow were defined and recognized. The sub-channel flow regimes at the same cross section were compared to each other, which show similar feature with the local flow regimes in pipe. It is possible to identify nine different global flow regime configurations by combining the corner, side and inner sub-channel flow regime at the same cross section, which was drawn in the 2D sub-channel flow regime.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Sidharth Paranjape ◽  
Shao-Wen Chen ◽  
Takashi Hibiki ◽  
Mamoru Ishii

Flow regime maps were obtained for adiabatic air-water two-phase flow through a flow channel with 8 × 8 rod bundle, which simulated a typical rod bundle in a boiling water reactor. Impedance void meters were used to measure the area averaged void fraction at various axial locations in the flow channel. The Cumulative Probability Distribution Functions of the signals from the impedance meters were utilized along with self organizing neural network methodology to identify the flow regimes. The flow regimes were identified at five axial locations in the channel in order to understand the development of the flow regimes in axial direction. The experimental flow regime transition boundaries for bubbly to cap-bubbly and part of the cap-turbulent to churn-turbulent agreed with the theoretical boundaries of bubbly to slug and slug to churn-turbulent in round pipes. In addition, the two impedance void meters located across a spacer grid, revealed the nature of change in the flow regime across the spacer grid.


Author(s):  
Darin J. Sharar ◽  
Arthur E. Bergles ◽  
Nicholas R. Jankowski ◽  
Avram Bar-Cohen

A non-intrusive optical method for two-phase flow pattern identification was developed to validate flow regime maps for two-phase adiabatic flow in a small diameter tube. Empirical measurements of film thickness have been shown to provide objective identification of the dominant two-phase flow regimes, representing a significant improvement over the traditional use of exclusively visual and verbal descriptions. Use of this technique has shown the Taitel-Dukler, Ullmann-Brauner, and Wojtan et al. phenomenological flow regime mapping methodologies to be applicable, with varying accuracy, to small diameter two-phase flow.


Author(s):  
H. Y. Wu ◽  
Ping Cheng

A simultaneous visualization and measurement study has been carried out to investigate flow boiling of water in the 8 parallel silicon microchannels heated from below. It is found that there are two large-amplitude/long-period oscillating boiling modes exist in microchannels depending on the amounts of heat flux and mass flux. When the outlet water temperature is at saturation temperature and the wall temperatures are superheated, while the inlet water temperature is still subcooled, a Liquid/Two-phase Alternating Flow (LTAF) mode appears in the microchannels. This LTAF mode disappears when the inlet temperatures reaches the saturation temperature. As the heat flux is further increased such that the outlet water is superheated while the inlet water temperature is oscillating between subcooled and saturation temperature, a Liquid/Two-phase/Vapor Alternating Flow (LTVAF) mode begins. During these two unstable boiling modes, there are large-amplitude and long-period oscillations of water and wall temperatures with respect to time. Bubbly flow as well as some peculiar two-phase flow pattern are observed during the two-phase flow periods of the two unstable modes in the microchannels.


Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.


Author(s):  
Pei-Syuan Ruan ◽  
Shao-Wen Chen ◽  
Min-Song Lin ◽  
Jin-Der Lee ◽  
Jong-Rong Wang

Abstract This paper presents the experimental results and analyses of the structure velocity of air-water two-phase flow in a 3 × 3 rod bundle channel. A total of 56 flow conditions were tested and investigated for rod-gap, sub-channel, rod-wall and global regions of rod bundle geometry. The experimental tests were carried out under bubbly and cap-bubbly flow regimes with superficial gas and liquid velocities of 0–1 m/s and 1–1.7 m/s, respectively. The conductivity probes were set at different heights to measure the global and local void fractions. The structure velocity of air-water two-phase flow is the average bubble velocity calculated by the method in this study. The structure velocity were determined by utilizing the cross-correlation technique to analyze the time lags of the bubbles passing through the conductivity probes. The results of this study indicated that the structure velocity may increase with increasing superficial gas and liquid velocities. In low superficial gas velocity region, the structure velocity may first slightly increase and follow by a sudden jump which appear in most regions. After the sudden jump, the structure velocity may keep increasing mildly. The present structure velocities have been compared with the area-averaged gas velocities predicted by the drift flux model, and it appears that most structure velocities show a good agreement with the averaged gas velocities from the drift flux model after the jump.


2020 ◽  
Vol 10 (23) ◽  
pp. 8739
Author(s):  
Vitaly Sergeev ◽  
Nikolai Vatin ◽  
Evgeny Kotov ◽  
Darya Nemova ◽  
Svyatoslav Khorobrov

The main objective of the study is to propose a technical solution integrated into the pipeline for the transition of the flow regime from slug to bubbly two-phase flow. The object of research is isothermal two-phase gas–Newtonian-liquid flow in a horizontal circular pipeline. There is local resistance in the pipe in the form of a streamlined transverse mesh partition. The mesh partition ensures the transition of the flow from the slug regime to the bubbly regime. The purpose of the study is to propose a technical solution integrated into the pipeline for changing the flow regime of a two-phase flow from slug to bubbly flow. The method of research is a simulation using computational fluid dynamics (CFD) numerical simulation. The Navier–Stokes equations averaged by Reynolds describes the fluid motion. The k-ε models were used to close the Reynolds-averaged Navier–Stokes (RANS) equations. The computing cluster «Polytechnic—RSK Tornado» was used to solve the tasks. The results of simulation show that pressure drop on the grid did not exceed 10% of the pressure drop along the length of the pipeline. The mesh partition transits the flow regime from slug to layered one, which will help to increase the service life and operational safety of a real pipeline at insignificant energy costs to overcome the additional resistance integrated into the pipeline.


2012 ◽  
Vol 33 (2) ◽  
pp. 47-65
Author(s):  
Amr Mohamed Elazhary ◽  
Hassan M. Soliman

Abstract An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.


2004 ◽  
Vol 126 (1) ◽  
pp. 107-118 ◽  
Author(s):  
J. L. Pawloski ◽  
C. Y. Ching ◽  
M. Shoukri

The void fractions, flow regimes, and pressure drop of air-oil two-phase flow in a half-inch diameter pipe over a wide range of test conditions have been investigated. The flow regimes were identified with the aid of a 1000 frames per second high-speed camera. A capacitance sensor for instantaneous void fraction measurements was developed. The mean and probability density function of the instantaneous void fraction signal can be used to effectively identify the different flow regimes. The current flow regime data show significant differences in the transitional boundaries of the existing flow regime maps. Property correction factors for the flow regime maps are recommended. The pressure drop measurements were compared to the predictions from four existing two-phase flow pressure drop models. Though some of the models performed better for certain flow regimes, none of the models were found to give accurate results over the entire range of flow regimes.


Author(s):  
Paul J. Kreitzer ◽  
Michael Hanchak ◽  
Larry Byrd

Understanding the behavior of transient two phase refrigerant flow is an important aspect of implementing vapor compression systems in future aerospace applications. Pressure drop and heat transfer coefficient are important parameters that guide the design process, and are influenced by flow regime. Published two phase flow models rely heavily on a priori knowledge of the current two phase flow conditions including flow regime. Additional complications arise when applying published correlations to a range of systems because each correlation is based on a specific set of experimental conditions, including working fluid, flow orientation, channel size, and channel shape. Non-intrusive measurement techniques provide important advantages while measuring the behavior of two phase flow systems. A two phase flow experimental test rig has been developed at the Air Force Research Laboratory, providing a closed loop refrigeration system capable of producing flow regimes from bubbly through annular flow. Two phase flow is produced by pumping subcooled R134a through a heat exchanger with 40 minichannels into an adiabatic transparent fused quartz observation channel with a hydraulic diameter of 7 mm. Refrigerant mass flux is varied from 100–400 kg/m2s with a heat flux from 0–15.5 W/cm2. Temperatures ranged from 18–25 °C and pressures between 550–750 kPa. The data from high speed pressure transducers were analyzed using standard signal processing techniques to identify the different flow regimes. Initial results indicate that different flow regimes can be identified from their pressure signature. In addition, real-time void fraction measurements were taken using Electrical Capacitance Tomography (ECT). This paper describes the process behind ECT systems used to measure two phase flow conditions. Comparisons with high speed video assess the accuracy of ECT measurements in identifying various two phase flow conditions. Results indicate variations between ECT and high speed images, however, enough information is provided to create flow pattern maps and regime identification for different superficial vapor and liquid velocities.


Sign in / Sign up

Export Citation Format

Share Document