scholarly journals Preparation and Electrochemical Performance of a Graphene Cathode Catalyst Decorated With Pt by Prolysis

2022 ◽  
Vol 9 ◽  
Author(s):  
Xi Wang ◽  
Ying Ren ◽  
Ni Suo ◽  
Guifeng Zhang

For fuel cells, to produce high-quality and low-platinum catalyst is a pressing technical problem. In this study, graphene cathode catalysts with controllable platinum content were decorated by pyrolyzing chloroplatinic acid under various process parameters to obtain a high catalytic activity and durability. The results show that platinum particles generated by pyrolyzing chloroplatinic acid are uniformly loaded on graphene without agglomeration. The average particle size of platinum particles is about 2.12 nm. The oxygen reduction reaction catalytic activity of catalyst samples first increases, then decreases with increasing platinum loading in cyclic voltammetry and LSV. Compared with the commercial Pt/C (20 wt% Pt) catalyst, the initial potential and the current density retention rate of the catalyst decorated with 8% platinum are 55 mV and 23.7% higher, respectively. From i-t curves, it was found that the stability of the catalyst prepared in this paper was improved compared with the commercial Pt/C catalyst. The catalysts prepared in the present research exhibits superior catalytic activity and stability.

MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


2012 ◽  
Vol 531 ◽  
pp. 358-361 ◽  
Author(s):  
Ming Mei Zhang ◽  
Qian Sun ◽  
Ji Min Xie

A well-dispersed Ni nanoparticles on multi-walled carbon nanotubes (Ni@MWCNTs) was prepared by chemical vapor deposition (CVD) method using a vacuum quartz tube furnace at the temperature of 600°C. The scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed to characterize the synthesized catalyst. It shows an unfirom dispersion of Ni nanoparticles on MWCNTs with the average particle size of 8.6 nm. The as synthesized catalyst was applied in a redox reaction of 4-nitrophenol, which showed very high catalytic activity, stability and well conversion. The catalyst can be easily separated due to the magnetical performance


2012 ◽  
Vol 77 (12) ◽  
pp. 1799-1806 ◽  
Author(s):  
Eriks Palcevskis ◽  
Lidija Kulikova ◽  
Vera Serga ◽  
Antons Cvetkovs ◽  
Svetlana Chornaja ◽  
...  

A platinum catalyst for glycerol oxidation by molecular oxygen has been developed applying the extractive-pyrolytic method and using, as a support, a fine alumina powder with an average particle size of 30-60 nm processed by plasma technology. The extractive-pyrolytic method (EPM) allows affixing small amounts of catalytic metals (1-5%) with the particle size ranging from several nanometers to several tens of nanometers onto the surface of the support. The prepared material - 4.8 wt. % platinum on nano-sized alumina - can be used as a catalyst for glycerol oxidation by oxygen with conversion up to 84%, in order to produce some organic acids (glyceric and lactic acid) with a selectivity of about 60%.


2019 ◽  
Vol 85 (11) ◽  
pp. 15-27
Author(s):  
Yuliia Pohorenko ◽  
Anatoliy Omel’chuk ◽  
Olexandr Ivanenko ◽  
Tamara Pavlenko

Cobalt oxides and/or manganese and their com-position based on cerium and zirconium oxides (CeO2 : ZrO2 = 1:1 mol.%) with a content of up to 20 wt. % are synthesized. Samples of both individual oxides and complex oxide compositions were prepared by precipitation from solutions of am-monia (room temperature) or hexamethylenetet-ramine (80–90 °C) followed by heat treatment. Results of DTA show, that due to the calcination at 400 ° C (2 h), the obtained samples lose 17–22 wt. % corresponding to 2–3.8 molecules of water. According to the X-ray powder analysis, initially are formed hydroxide compounds of cobalt (CoO· xH2O) and manganese (MnO2·yН2О), which, after being heated at 400 °C for 2 hours, are converted into mixed oxides from the composition of Co3O4 and Mn3O4. The average particle size calculated by the Sherer equation is 18–30 nm. In the study of catalytic activity on the example of the reaction of the hydrogen peroxide decomposition, it was found that the obtained samples from the solution of GMTA show a greater ability to catalytically decompose hydrogen peroxide compared to samples obtained from the ammonia solution. In this case, the catalytic activity of dried samples is twice as high as roasted, regardless of the method of obtaining. Samples of oxide compo-sitions with deposited 5–10 wt. % of Ce–Zr oxides (1:1) exhibit the highest ability to decompose H2O2. In this case, samples of compositions obtained from the solution of GMTA, have a prolonged catalytic action, and when precipitation in the solution of ammonia, the reaction takes place quite actively during 4–5 days. Compositions formed from co-deposited or mechanically mixed hydroxocompounds of cobalt and manganese with 5 wt. % of CeO2–ZrO2 (1:1) deposited on them have different catalytic activity. In the case of mechanically mixed, it is 30% lower and with subsequent calcination at 400 °C, it is reduced by almost half, and with co-precipitation, the activity is quite high and does not change with heat treatment. In the case of obtaining samples of Co–Mn with Ce–Zr (1:1) deposited on them in excess of 10 wt. % the catalytic activity of the samples dried at 80 °C is equal to the activity of the co-deposited hydroxocompounds of cobalt and manganese and  the  calcination  at  400  °C  it  reduces  it by  30 %. The best ability for catalysis was found in samples CoO·xH2O + 5 wt. % MnO2·yН2О, СоO×хН2О + 10 wt. % CeO2:ZrO2 and СоO×хН2О–MnO2×yН2О, precipitated with the GMTA solution and dried at 80 °C. The besser catalytic properties revealed a sample of СоО×хН2О + 10 wt. % CeO2:ZrO2, which with-out stirring is capable of decomposing 1.2–1.4 dm3/g of hydrogen peroxide with a rapid reaction and in the experiment the volume of H2O2 reacted was 3.4 dm3/g.


2021 ◽  
Author(s):  
Salah Laouini ◽  
Abderrhmane Bouafia ◽  
Mohammed Tedjani

Abstract In this study, green synthesis of silver /silver oxide nanoparticles was successfully prepared from Phoenix Dactylifera L aqueous leaves extract. The effect of different volume ratio (% v/v) (Plant extract / Precursor) on the nanoparticles silver /silver oxide nanoparticles formation, optical properties, and catalytic activity for dye degradation was studied. The obtained Ag/Ag2O nanoparticles were characterized using various techniques, such as UV-Visible, FT-IR, XRD, SEM for this purpose. The UV-Vis spectrum shows the absorption at 430 nm associated with Ag/Ag2O NPs. The optical bandgap values were found to be in the range of 3.22 to 4.47 eV for the direct bandgap and 3.73 to 5.23 eV for the indirect bandgap. The functional groups present in plant extracts were studied by FTIR. XRD confirmed the crystalline nature of Ag / Ag2O NP, and its average particle size was between 28.66-39.40 nm. SEM showed that the green synthesized silver/silver oxide nanoparticles have a spherical shape. The purpose of this study, it highlights the high catalytic activity for dye degradation of Ag/Ag2O NPs green synthesized. As a result, the use of Phoenix Dactylifera L aqueous leaves extract offers a cost-effective and eco-friendly method.


2019 ◽  
Author(s):  
Disha Jain

<p>Supported Ni catalysts are extensively studied for methane reforming due to their high catalytic activity and low cost. However, these catalysts undergo deactivation due to coke deposition and oxidation of Ni particles. In the present work, Ni and Pt substituted CoTiO<sub>3</sub> were synthesized and studied for steam (SRM) and dry (DRM) reforming of methane. The catalytic activity of monometallic and bimetallic Ni-Pt catalyst was compared for SRM and reducibility studies were done to highlight the change in metal-support interaction in the synthesized samples. Ex situ and in situ characterization were performed to understand the change in catalyst surface and the nature of surface intermediates formed during the reaction. Consequently, surface reaction mechanism was proposed and kinetic parameters were determined by fitting experimental data.</p><br>


2019 ◽  
Author(s):  
Disha Jain

<p>Supported Ni catalysts are extensively studied for methane reforming due to their high catalytic activity and low cost. However, these catalysts undergo deactivation due to coke deposition and oxidation of Ni particles. In the present work, Ni and Pt substituted CoTiO<sub>3</sub> were synthesized and studied for steam (SRM) and dry (DRM) reforming of methane. The catalytic activity of monometallic and bimetallic Ni-Pt catalyst was compared for SRM and reducibility studies were done to highlight the change in metal-support interaction in the synthesized samples. Ex situ and in situ characterization were performed to understand the change in catalyst surface and the nature of surface intermediates formed during the reaction. Consequently, surface reaction mechanism was proposed and kinetic parameters were determined by fitting experimental data.</p><br>


2020 ◽  
Vol 92 (3) ◽  
pp. 413-427 ◽  
Author(s):  
Robinson B. Dinamarca ◽  
Rodrigo Espinoza-González ◽  
Cristian H. Campos ◽  
Gina Pecchi

AbstractThis study reports the catalytic preparation, characterization, and evaluation of nanoscale core-shell structures with a γ-Fe2O3 core covered by a SiO2 monoshell or by a SiO2@TiO2 multishell as a support for Pt nanoparticles (NPs) to synthesize active and operationally stable catalysts for selective liquid-phase cinnamaldehyde hydrogenation. The structures were designed with a magnetic core so they could be easily recovered from the catalytic bed by simple magnetization and with a SiO2 monoshell or a SiO2@TiO2 multishell to protect the magnetic core. At the same time, this study details the effect of the shell on the catalytic performance. Moreover, the effect of particle size on the selective production of cinnamyl alcohol was studied by preparing two families of catalysts with metal loadings of 1 wt% and 5 wt% Pt with respect to the core-shell. The particle size effect enabled the Fe2O3@SiO2-5%Pt system, with an average particle size of 5.6 nm, to reach 100 % conversion of cinnamaldehyde at 300 min of reaction, producing cinnamyl alcohol with 90 % selectivity; this result differed greatly from that of the Fe2O3@SiO2-1%Pt (dPt = 3.5 nm) system, which reached a maximum conversion at 600 min with 49 % selectivity for the product of interest. However, the Fe2O3@SiO2@TiO2-x%Pt systems showed lower levels of conversion and selectivity compared to those of the Fe2O3@SiO2-x%Pt catalysts, which is attributed to the fact that average metal particle sizes below 5.0 nm were obtained in both cases. After reduction in H2 at 773 K, the Fe2O3@SiO2@TiO2-1%Pt catalyst showed deactivation, reaching 10 % conversion at 600 min of reaction and 60 % selectivity for the product of interest. However, the reduced Fe2O3@SiO2@TiO2-5%Pt system showed 98 % conversion with 95 % selectivity for cinnamyl alcohol at 24 h of operation; the increase in selectivity is attributed to the combined effects of the increase in average particle size (~7.5 nm) and the presence of strong metal-support interaction – SMSI – effects after reduction. Finally, the most selective systems were tested for operational stability, where the Fe2O3@SiO2@-5%Pt catalyst could be reused in three consecutive operating cycles while maintaining its activity and selectivity for cinnamyl alcohol – unlike the Fe2O3@SiO2@TiO2-5%Pt reduced system, which was deactivated after the third reaction cycle due to active phase leaching.


2019 ◽  
Vol 811 ◽  
pp. 47-54
Author(s):  
Deana Wahyuningrum ◽  
Irma Mulyani ◽  
Ray Putra Prajnamitra

Two imine derivative ligands, L1 and L2, have been synthesized using the microwave assisted organic synthesis (MAOS) method from the reaction between bibenzoyl and L-tryptophan and L-Histidine, respectively. The ligands were further transformed into two nickel(II) complex, C1 and C2, as the precursors of catalysts in glucose conversion to sorbitol. The two NiO/SiO2 catalysts, K1 and K2, have been generated through the calcination process of complex C1 and C2, respectively, which were previously impregnated into silica. The K1 catalyst with average particle size of 5 nm shows good catalytic activity, with no presence of any nickel leached into the solution, and has successfully converted 21.99% of glucose into sorbitol. The K2 catalyst with average particle size of 10 nm also shows good catalytic activity and has successfully converted 32.30% of glucose into sorbitol, although it shows the presence of leached nickel.


2014 ◽  
Vol 881-883 ◽  
pp. 315-323
Author(s):  
Feng Wang ◽  
Yun Quan Yang ◽  
Wei Yan Wang

The Ni-Pt bimetallic catalyst supported on nanofilm alumina was prepared by coprecipitation method under the assistance of ultrasonic vibration. The characterization result revealed that the prepared catalyst had a good dispersion with an average particle size around 7nm. The activities of supported catalyst of Ni, Pt and Ni-Pt were compared through using the dehydrogenation of methylcyclohexane (MCH) to produce toluene in Microreactor-Gas Chromatography System (MGCS). The conversion and the selectivity of the Ni-Pt catalyst at 350°C for the dehydrogenation of MCH was 97.0% and 100%, respectively. It was found that the bimetallic synergistic effect between Ni and Pt particles would affect the catalyst performance. The addition of Ni into Pt/γ-Al2O3 catalyst was beneficial to decrease the use of Pt in the dehydrogenation.


Sign in / Sign up

Export Citation Format

Share Document