scholarly journals The Impact of Electricity Price on Power-Generation Structure: Evidence From China

2021 ◽  
Vol 9 ◽  
Author(s):  
Jing Wang ◽  
Hong Li

Being affected by a variety of factors, power-generation structure plays an essential role in a high-quality and sustainable development. The focus of this paper is to evaluate the influence of electricity price on it. First, we provide a microeconomic framework to understand the impact mechanism. We discuss two effects through which price level can affect power generation, and then the power-generation structure. After that, an empirical test is conducted using provincial panel data, and the results of it are robust. We also test the above-mentioned mechanism empirically. There are two main conclusions. First, the electricity price has a positive effect on the share of thermal power in electricity generation. Second, the mechanism test shows that an increase of electricity price can not only improve efficiency of power plants but also propel firms to invest in more renewable energy plants.

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Mohammad Abutayeh ◽  
Anas Alazzam

Quite a few computer programs have been developed to model power plant performance. These software codes are geared toward modeling steady-state operations, which are usually sufficient for conventional power plants. Solar thermal power plants undergo prolonged transient start-up and shut-down operations due to the periodic nature of solar radiation. Moreover, the large size of the solar field brings about large residence time that must be considered to accurately lag power generation. A novel scheme has been developed to fine-tune steady-state solar power generation models to accurately take account of the impact of those transient operations. The suggested new scheme is implemented by adjusting solar radiation data input to the model and has been shown to clearly improve modeling accuracy by moving modeled results closer to matching real operating data.


Author(s):  
Y. S. Petrusha ◽  
N. A. Papkova

The use of wind turbines to create wind energy is one of the main alternatives to the traditional technologies of power generation. The exclusion of combustion products emissions at thermal power plants that operate on hydrocarbon fuel, as well as the exclusion of the fuel component of the cost of electricity generation makes the wind power technology very attractive. However, the rigor of the operation requirements of wind turbines as part of power systems, low density of the flow of primary energy source and the lack of control of it, low utilization of installed capacity, limited operating life, shutdowns in the conditions of squally gusts of wind and ice formation, large areas of alienated land, the impact of noise and infrasonic vibrations and the problems of utilization of large-size structural elements and foundations require a comprehensive analysis of conditions of wind turbines application. Despite the absence of desert areas and of restrictions on the construction of ultra-high structures the analysis of natural and climatic conditions of Belarus demonstrates favorable natural and landscape conditions for the development of wind power generation. The principal task is to choose the location of wind power plants with due regard to environmental requirements, temperature and humidity conditions, terrain and geological features of the location. The results of calculations of the wind flow conditions showed the preference for the joint application of the Weibull and Rayleigh functions that provide the confidence interval of the approximation of the wind speed function, while the terrain specific features make it possible to expect to obtain higher values of the established capacity utilization factor. The development of a distributed energy generation accompanied by Smart Grid technology wide use over electric networks (which would provide new opportunities for consumers and make it possible to eliminate the monopoly of powerful power plants and to reduce burden of basic costs of big power production) ought to be considered as obvious prospect of wind power plants application.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Jürgen Dersch ◽  
Peter Schwarzbözl ◽  
Timo Richert

An existing software tool for annual performance calculation of concentrating solar power and other renewable energy plants has been extended to enable the simulation of solar tower power plants. The methodology used is shown and a demonstrative example of a 50 MWe tower plant in southern Spain is given. The influence of design power and latitude on solar field layout is discussed. Furthermore, a comparison of the tower plant with a 50 MWe parabolic trough and a Linear Fresnel plant at the same site is given.


Author(s):  
M.V. Cherniavskyi

The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.


2013 ◽  
Vol 36 (1) ◽  
pp. 31-40
Author(s):  
P. Durairasu ◽  
K. Parthiban

Bioresources particularly the dendro energy resources play significant role in meeting the energy requirement of both domestic and industrial requirements. With the improvement in the technology of conversion and utilization over the last three decades dendro energy resources have reached a status of being considered as commercial energy resources and are prioritized for use in decentralized biomass based power generation projects. However, many biomass based power plants started in the country in general and the state of Tamil Nadu in particular have exhibited various constraints which resulted in uncertained power generation. The reasons are numerous but the key factors are non-availability of quality (High Calorific Value) raw material, fragmented land use pattern, lack of site specific HDSR models, unorganized supply chain and lack of partnership among various stake holders. Against this back drop, the current project has conceived a concept of consortium mode dendro energy farming by comprehensively involving all levels of stake holders viz., research institutes for technology development for dendro energy resources, biomass power plant for assuring minimum support price and to facilitate contract farming, the farmers to grow energy trees identified by the research institutes and adopt precision silvicultural technology and lastly the financial institution to provide credit facilities to energy plantation growers. This consortium has been successfully introduced and implemented in Tamil Nadu in association with Auromira Energy Company Limited which have three Biomass Power Plants with an installed capacity of 35.5 MW. Through this consortium, the research institute has identified high yielding energy rich species and developed HDSR models suitable for varied agroclimatic zones. This consortium has introduced contract dendro energy farming in the state following farm forestry and captive model approaches. The various contract farming models land lease, tree share and income share models have been introduced through this consortium to benefit the growers and the biomass based power plants. In a holistic perspective the consortium has reduced the impact of multipartite supply chain in to a bi-partite, tri-partite and quad partite model supply chain thereby helped to augment the Production to Consumption System (PCS). This model can suitably be modified to meet the wood requirement of other wood based industries. This paper discusses the constraints and the interventions made to augment dendrobioresources to generate power which are from clean and green bioresources.


2018 ◽  
Vol 276 ◽  
pp. 110-115
Author(s):  
Martin Ťažký ◽  
Martin Labaj ◽  
Rudolf Hela

The by-products of energy industry are nowadays often affected by new limits governing the production of harmful gases discharged into the air. These stricter and stricter criteria are often met by electricity producers by changing the combustion process in thermal power plants itself. Nowadays, the SNCR (selective non-catalytic reduction) application is quite common in the combustion process in order to help reduce the nitrogen oxide emission. This article deals with the primary measures of thermal power plants, which in particular consist of a modified treatment of raw materials (coal) entering the combustion process. These primary measures then often cause the formation of fly ash with unsuitable fineness for the use in concrete according to EN 450. The paper presents the comparison of the physico-mechanical parameters of several fly ashes with a different fineness values. The primary task is to assess the impact of non-suitable granulometry in terms of EN 450 on the other physico-mechanical parameters of fly ashes sampled within the same thermal power plant. Several fly ashes produced in the Czech Republic and surrounding countries were evaluated in this way.


Sign in / Sign up

Export Citation Format

Share Document