scholarly journals Combined Effects of Warming and Grazing on Rangeland Vegetation on the Qinghai-Tibet Plateau

2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Chen ◽  
Tiejian Li ◽  
Bellie Sivakumar ◽  
Ashish Sharma ◽  
John D. Albertson ◽  
...  

Climate warming has increased grassland productivity on the Qinghai-Tibet Plateau, while intensified grazing has brought increasing direct negative effects. To understand the effects of climate change and make sustainable management decisions, it is crucial to identify the combined effects. Here, we separate the grazing effects with a climate-driven probability model and elaborate scenario comparison, using the Normalized Difference Vegetation Index (NDVI) of the grassland on the Qinghai-Tibet Plateau. We show that grazing has positive effects on NDVI in the beginning and end of the growing season, and negative effects in the middle. Because of the positive effects, studies tend to underestimate and even ignore the grazing pressure under a warming climate. Moreover, the seasonality of grazing effects changes the NDVI-biomass relationship, influencing the assessment of climate change impacts. Therefore, the seasonality of grazing effects should be an important determinant in the response of grassland to warming in sustainability analysis.

2020 ◽  
Vol 12 (24) ◽  
pp. 4138
Author(s):  
Xingna Lin ◽  
Jianzhi Niu ◽  
Ronny Berndtsson ◽  
Xinxiao Yu ◽  
Linus Zhang ◽  
...  

Vegetation is an important component of the terrestrial ecosystem that plays an essential role in the exchange of water and energy in climate and biogeochemical cycles. This study investigated the spatiotemporal variation of normalized difference vegetation index (NDVI) in northern China using the GIMMS-MODIS NDVI during 1982–2018. We explored the dominant drivers of NDVI change using regression analyses. Results show that the regional average NDVI for northern China increased at a rate of 0.001 year−1. NDVI improved and degraded area corresponded to 36.1% and 9.7% of the total investigated area, respectively. Climate drivers were responsible for NDVI change in 46.2% of the study area, and the regional average NDVI trend in the region where the dominant drivers were temperature (T), precipitation (P), and the combination of precipitation and temperature (P&T), increased at a rate of 0.0028, 0.0027, and 0.0056 year−1, respectively. We conclude that P has positive dominant effects on NDVI in the subregion VIAiia, VIAiic, VIAiib, VIAib of temperate grassland region, and VIIBiia of temperate desert region in northern China. T has positive dominant effects on NDVI in the alpine vegetation region of Qinghai Tibet Plateau. NDVI is negatively dominated by T in the subregion VIIBiib, VIIBib, VIIAi, and VIIBi of temperate desert regions. Human activities affect NDVI directly by reforestation, especially in Shaanxi, Shanxi, and Hebei provinces.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hongshan Gao ◽  
Fenliang Liu ◽  
Tianqi Yan ◽  
Lin Qin ◽  
Zongmeng Li

The drainage density (Dd) is an important index to show fluvial geomorphology. The study on Dd is helpful to understand the evolution of the whole hydrological and geomorphic process. Based on the Shuttle Radar Topography Mission 90-m digital elevation model, the drainage network of basins along the eastern margin of the Qinghai–Tibet Plateau is extracted using a terrain morphology-based method in ArcGIS 10.3, and Dd is calculated. The spatial characteristics of Dd are analyzed, and the relationship between Dd and its influencing factors, e.g., the topography, precipitation, and vegetation coverage, is explored. Our results show that terrains with a plan curvature ≥3 can represent the channels in the study area. Dd ranges from 2.5 to 0.1 km/km2, increases first, and then decreases from north to south on the eastern margin of the Qinghai–Tibet Plateau. Dd decreases with increasing average slope and average local relief. On the low-relief planation surfaces, Dd increases with increasing altitude, while on the rugged mountainous above planation surfaces, Dd decreases rapidly with increasing altitude. Dd first increased and then decreased with increasing mean annual precipitation (MAP) and normalized difference vegetation index (NDVI), and Dd reaches a maximum in the West Qinling Mountains with a semi-arid environment, indicating that Dd in different climatic regions of the eastern margin of the Qinghai–Tibet Plateau was mainly controlled by precipitation and vegetation.


2021 ◽  
Vol 13 (23) ◽  
pp. 4952
Author(s):  
Xigang Liu ◽  
Yaning Chen ◽  
Zhi Li ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

Phenological change is an emerging hot topic in ecology and climate change research. Existing phenological studies in the Qinghai–Tibet Plateau (QTP) have focused on overall changes, while ignoring the different characteristics of changes in different regions. Here, we use the Global Inventory Modeling and Mapping Studies (GIMMS3g) normalized difference vegetation index (NDVI) dataset as a basis to discuss the temporal and spatial changes in vegetation phenology in the Qinghai–Tibet Plateau from 1982 to 2015. We also analyze the response mechanisms of pre-season climate factor and vegetation phenology and reveal the driving forces of the changes in vegetation phenology. The results show that: (1) the start of the growing season (SOS) and the length of the growing season (LOS) in the QTP fluctuate greatly year by year; (2) in the study area, the change in pre-season precipitation significantly affects the SOS in the northeast (p < 0.05), while, the delay in the end of the growing season (EOS) in the northeast is determined by pre-season air temperature and precipitation; (3) pre-season precipitation in April or May is the main driving force of the SOS of different vegetation, while air temperature and precipitation in the pre-season jointly affect the EOS of different vegetation. The differences in and the diversity of vegetation types together lead to complex changes in vegetation phenology across different regions within the QTP. Therefore, addressing the characteristics and impacts of changes in vegetation phenology across different regions plays an important role in ecological protection in this region.


2020 ◽  
Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Shikui Dong ◽  
Fangning Shi

&lt;p&gt;Quantifying drought variations at multi-time scales is important to assess the potential impacts of climate change on terrestrial ecosystems, especially vulnerable desert grassland. Based on the Normalized Difference Vegetation Index (NDVI) and Standardized Precipitation Evapotranspiration Index (SPEI), we assessed the influences of different time-scales drought (SPEI-3, SPEI-6, SPEI-12, SPEI-24, and SPEI-48 with 3, 6, 12, 24 and 48 months, respectively) on vegetation dynamics in the Qaidam River Basin, Qinghai-Tibet Plateau. Results showed that: (1) Temporally, annual and summer NDVI increased, while spring and autumn NDVI decreased from 1998 to 2015. Annual, spring and summer SPEI increased and autumn SPEI decreased. (2) Spatially, annual, spring, summer, and autumn NDVI increased in the periphery of the Basin, with 45.98%, 22.68%, 43.90%&amp;#160; and 30.80% of the study area, respectively. SPEI showed a reverse variation pattern with NDVI, with an obvious decreasing trend from southeast to northwest. (3) Annual vegetation growth in most areas (69.53%, 77.33%, 86.36%, 90.19% and 85.44%) was correlated with drought at all time-scales during 1998-2015. However, high spatial and seasonal differences occurred among different time-scales, with the maximum influence in summer under SPEI24. (4) From month to annual scales, NDVI of all land cover types showed higher correlation to long-term drought of SPEI24 or SPEI48. Vegetation condition index (VCI) and SPEI were positively correlated at all time-scales and had a more obvious response in summer. The highest correlation was VCI of grassland (June-July) or forest (April-May, August-October) and SPEI48. This study contributes to exploring the effect of drought on vegetation dynamics at different time scales, further providing credible guidance for regional water resources management.&lt;/p&gt;


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Sang-Jin Park ◽  
Seung-Gyu Jeong ◽  
Yong Park ◽  
Sang-hyuk Kim ◽  
Dong-kun Lee ◽  
...  

Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.


Sign in / Sign up

Export Citation Format

Share Document