scholarly journals Biochar and Compost-Based Integrated Nutrient Management: Potential for Carbon and Microbial Enrichment in Degraded Acidic and Charland Soils

2022 ◽  
Vol 9 ◽  
Author(s):  
M. M. Rahman ◽  
Md. Rafiqul Islam ◽  
Shihab Uddin ◽  
Mohammad Mahmudur Rahman ◽  
Ahmed Gaber ◽  
...  

Soil acidification and charland formation through alluvial sand deposition are emerging threats to food security in Bangladesh in that they endanger crop production in about 35% of its territory. The integrated plant nutrient system (IPNS) is a globally accepted nutrient management approach designed to revive the damaged soils’ fertility level. Total organic carbon (TOC) in soil is a composite index of soil quality that has consequences for agricultural productivity and natural soil ecosystems. This study assesses the impacts of using biochar, compost, poultry litter, and vermicompost-based IPNS approaches on labile and TOC pools, TOC stocks, lability and management indices, and microbial populations under different cropping patterns after 2 years in acidic and charland soils. The application of IPNS treatments increased microbial biomass carbon (MBC) by 9.1–50.0% in acidic soil and 8.8–41.2% in charland soil compared to the untreated soil, with the largest increase in poultry manure biochar (PMB). Microbial biomass nitrogen (MBN) rose from 20 to 180% in charland soil compared to the control, although no effect was observed in acidic soil. Basal respiration (BR) rose by 43–429% in acidic soil and 16–189% in charland soil compared to the control, exhibiting the highest value in PMB. IPNS treatments significantly improved SOC and POC but did not affect POXc and bulk density in both soils. The PMB and organic fertilizer (OF, compost)-based IPNS wielded the greatest influence on the lability index of MBC in acidic soils and the management index of MBC in both soils. This is despite the fact that IPNS did not affect the lability and management indices of active carbon (AC). IPNS treatments increased the stocks of SOC and MBC in both the soils and POC stock in acidic soil. IPNS treatments significantly boosted the bacterial and fungal populations in both soils, despite having no effect on phosphorus-solubilizing bacteria (PSB). Thus, PMB and OF (compost)-based IPNS may be a better nutrient management practice in degraded acidic and charland soils. This is especially the case in terms of soil quality improvement, soil carbon sequestration, and microbial enrichment.

Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 115-123 ◽  
Author(s):  
K. Zhang ◽  
H. Zheng ◽  
F. L. Chen ◽  
Z. Y. Ouyang ◽  
Y. Wang ◽  
...  

Abstract. Vegetation plays a key role in maintaining soil quality, but long-term changes in soil quality due to plant species change and successive planting are rarely reported. Using the space-for-time substitution method, adjacent plantations of Pinus and first, second, third and fourth generations of Eucalyptus in Guangxi, China were used to study changes in soil quality caused by converting Pinus to Eucalyptus and successive Eucalyptus planting. Soil chemical and biological properties were measured and a soil quality index was calculated using principal component analysis. Soil organic carbon, total nitrogen, alkaline hydrolytic nitrogen, microbial biomass carbon, microbial biomass nitrogen, cellobiosidase, phenol oxidase, peroxidase and acid phosphatase activities were significantly lower in the first and second generations of Eucalyptus plantations compared with Pinus plantation, but they were significantly higher in the third and fourth generations than in the first and second generations and significantly lower than in Pinus plantation. Soil total and available potassium were significantly lower in Eucalyptus plantations (1.8–2.5 g kg−1 and 26–66 mg kg−1) compared to the Pinus plantation (14.3 g kg−1 and 92 mg kg−1), but total phosphorus was significantly higher in Eucalyptus plantations (0.9–1.1 g kg−1) compared to the Pinus plantation (0.4 g kg−1). As an integrated indicator, soil quality index was highest in the Pinus plantation (0.92) and lowest in the first and second generations of Eucalyptus plantations (0.24 and 0.13). Soil quality index in the third and fourth generations (0.36 and 0.38) was between that in Pinus plantation and in first and second generations of Eucalyptus plantations. Changing tree species, reclamation and fertilization may have contributed to the change observed in soil quality during conversion of Pinus to Eucalyptus and successive Eucalyptus planting. Litter retention, keeping understorey coverage, and reducing soil disturbance during logging and subsequent establishment of the next rotation should be considered to help improving soil quality.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Zheng ◽  
Xiaori Han ◽  
Yuying Li ◽  
Jinfeng Yang ◽  
Na Li ◽  
...  

Abstract Applying biochar to soil has been proposed as a strategy to enhance soil quality and crop productivity. To further evaluate the influence of biochar and straw application on soil fertility and crop yield, a five-year fixed site field experiment was conducted in a paddy field in Northeast China. The experimental design included six treatments: control (CK), biochar (C), straw (S), chemical fertilizers (NPK), biochar with chemical fertilizer (CNPK) and straw with chemical fertilizer (SNPK). The results showed that compared with the NPK treatment, CNPK and SNPK significantly increased soil total porosity, soil air permeability coefficient, soil organic carbon (SOC), C/N ratio, soil microbial biomass carbon (SMBC)‚ soil microbial biomass nitrogen (SMBN), invertase activity and rice yield. Furthermore, amendment of biochar had a better effect on SOC, C/N ratio, SMBC, and SMBN than that of straw. In addition, SMBC, SOC, and total nitrogen (TN) had significant correlations with soil enzyme activities. Therefore, amendment of biochar with chemical fertilizer is an effective measure to improve rice production and soil quality in the northeast of China.


2020 ◽  
pp. 1-13 ◽  
Author(s):  
Lihong Wang ◽  
Qiang Fu

Forest fires significantly change soil function and quality. Finding an effective way to accelerate the restoration of soil quality after forest fires is a major issue. This study investigated the soil quality index (SQI) during vegetation restoration after a fire in a Larix gmelinii plantation, throughout different restoration years. Fifteen physical, chemical, and biological properties of soil were examined using principal component analysis, and soil quality was assessed by SQI. The results revealed that soil physical properties, chemical properties, and enzyme activities showed the most improvement after 24 yr of restoration. Soil microbial biomass carbon content and microbial biomass nitrogen content increased with restoration years. Soil bulk density, microbial biomass nitrogen, sucrase, and catalase were retained in the minimum data set. After 24 yr of restoration, SQI was the highest, with a value of 0.52, followed by natural restoration, 21, 13, and 16 yr; the SQI after 3 yr of restoration was the lowest, with a value of 0.26. Artificial regeneration accelerated the recovery of soil quality after 24 yr. Soil quality should be monitored continuously in the study area.


2014 ◽  
Vol 6 (2) ◽  
pp. 2779-2802
Author(s):  
K. Zhang ◽  
H. Zheng ◽  
F. L. Chen ◽  
Z. Y. Ouyang ◽  
Y. Wang ◽  
...  

Abstract. Plants play a key role in maintaining soil quality, but long-term changes in soil quality due to plant species change and successive planting are rarely reported. Using the space-for-time substitution method, adjacent plantations of Pinus and 1st, 2nd, 3rd and 4th generations of Eucalyptus in Guangxi, China were used to study changes in soil quality caused by converting Pinus to Eucalyptus and successive Eucalyptus planting. Soil chemical and biological properties were measured and a soil quality index (SQI) was calculated. Soil organic carbon, total nitrogen, alkaline hydrolytic nitrogen, microbial biomass carbon, microbial biomass nitrogen, cellobiosidase, phenol oxidase, peroxidase and acid phosphatase activities significantly decreased in the 1st and 2nd generations of Eucalyptus plantations after conversion from Pinus to Eucalyptus but gradually recovered in the 3rd and 4th generations. Soil total and available potassium were significantly lower, but total phosphorus was significantly higher in Eucalyptus plantations compared to the Pinus plantation. As an integrated indicator, SQI was highest in the Pinus plantation (0.92), but decreased to 0.24 and 0.13 in the 1st and 2nd generations of Eucalyptus plantations, respectively. However, it recovered to 0.36 and 0.38 in the 3rd and 4th generations, respectively. Changing tree species, reclamation and fertilization may have contributed to the "U" shaped change observed in soil quality during conversion of Pinus to Eucalyptus and successive Eucalyptus planting. Litter retention, keeping understory coverage, and reducing soil disturbance during logging and subsequent establishment of the next rotation should be considered to help improving soil quality during plantation management.


Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Christy Sangma ◽  
◽  
A. Thirugnanavel ◽  
Ph. Romen Sharma ◽  
G. Rajesha ◽  
...  

The pineapple var. Kew was planted on black polythene film mulching with double hedgerow planting to find out the influence of mulches on soil and plant. The soil samples were collected twice (kharif and rabi) at two different depths (0-15 and 15-30 cm), and the pH, soil organic carbon (SOC), nitrogen, phosphorus, potassium, basal respiration and soil microbial biomass carbon were analysed. The data revealed that soil organic carbon and available N, P, and K content were slightly higher in the bottom hill than the top hill. The mulched field had higher nutrients than the non-mulched field. The fertility level varied slightly between the seasons. The biological parameters (microbial biomass carbon) were observed to be significantly higher (P≤0.05) in the bottom hill in both the seasons than the non-mulched field. The soil moisture content ranged from 5.9 % in March to 24.24 % August in the bottom hill (15-30 cm depth). The moisture content in the non-mulched field was lower than the mulched field.


2012 ◽  
Vol 599 ◽  
pp. 124-127
Author(s):  
Cheng Hu Zhang ◽  
Ting Ting Song ◽  
Ju Liu ◽  
Hui Juan Xia ◽  
Jian Zhu Wang

Natural restoration slope and vegetation-growing concrete slope were selected as plots. Soil water content (SWC), pH, and soil organic matter, total nitrogen content (TN), total organic carbon (TOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), basal respiration, microbial quotient and metabolic quotient (qCO2) were analyzed. The main results show that: Soil organic matter, TN and MBC of 0-10 cm soil in the natural restoration slope are significantly lower than that in the vegetation-growing concrete slopes at 0.05 level. Both MBC and MBN show a highly significant positive correlation with soil organic matter and TN. Microbial quotient shows a highly significant negative correlation with TOC and MBN, and shows a significant negative correlation with MBC. The qCO2 shows a highly significant negative correlation with pH, and a significant negative correlation with MBC. The vegetation-growing concrete technology can improve the soil ecosystem in the impaired slope.


2007 ◽  
Vol 74 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Nancy R. Smith ◽  
Barbara E. Kishchuk ◽  
William W. Mohn

ABSTRACT Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4 + and NO3 − due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.


2018 ◽  
pp. 1-7
Author(s):  
O. A. Babalola ◽  
M. O. Adigun ◽  
I. O. Abiola

Millions of organic fertilizers are produced annually all over the world. Substantial quantities of these were crop residues and the remaining being animal waste based. Meanwhile maintaining and improving soil fertility in the tropic is essential for increasing food production for rapidly expanding the population. This project work, therefore, investigated the variation in soil chemical and microbiological properties as a result of yearly amendment with compost. The experimental site was the Organic Agricultural Farm located within the Federal University of Agriculture, Abeokuta. Soil samples were collected between 0 – 15 cm depth using soil auger and the samples were analyzed for the following soil parameters; total viable counts, total fungal counts, microbial biomass carbon, microbial biomass nitrogen, percentage organic carbon, microarthropod counts and earthworm counts. The experiment was a split-plot design using 2 varieties of tomato x 3 levels of compost and two durations of application. The variations include one improved variety (UCB 8) and a local variety (Beske), rate of compost – (0, 10, and 20) kg/ha and years of application (one and two years). Results generally showed that: duration has a significant effect on viable counts, microarthropod counts, microbial biomass P, microbial biomass C and percentage organic carbon but has no significant effect on fungal counts, microbial biomass nitrogen, and earthworm counts. The results indicate that application of compost manure is the preferred option to enhance SOM accumulation, improve soil fertility and quality, and increase tomato yield.


2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


Sign in / Sign up

Export Citation Format

Share Document