scholarly journals Neuroendocrine Regulation of Reproductive Dormancy in the Fruit Fly Drosophila melanogaster: A Review of Juvenile Hormone-Dependent Regulation

2021 ◽  
Vol 9 ◽  
Author(s):  
Yoshitomo Kurogi ◽  
Yosuke Mizuno ◽  
Eisuke Imura ◽  
Ryusuke Niwa

Animals can adjust their physiology, helping them survive and reproduce under a wide range of environmental conditions. One of the strategies to endure unfavorable environmental conditions such as low temperature and limited food supplies is dormancy. In some insect species, this may manifest as reproductive dormancy, which causes their reproductive organs to be severely depleted under conditions unsuitable for reproduction. Reproductive dormancy in insects is induced by a reduction in juvenile hormones synthesized in the corpus allatum (pl. corpora allata; CA) in response to winter-specific environmental cues, such as low temperatures and short-day length. In recent years, significant progress has been made in the study of dormancy-inducing conditions dependent on CA control mechanisms in Drosophila melanogaster. This review summarizes dormancy control mechanisms in D. melanogaster and discusses the implications for future studies of insect dormancy, particularly focusing on juvenile hormone-dependent regulation.

1952 ◽  
Vol 29 (4) ◽  
pp. 620-631
Author(s):  
V. B. WIGGLESWORTH

A technique is described by which the intact larva of Rhodnius can be transfused with blood from another larva without interfering with ecdysis. If the 4th-stage larva receives blood from a 3rd-stage larva it develops characters little different from those of the 4th instar. This is attributed to the 3rd-stage larva producing juvenile hormone at a higher concentration. If the 4th-stage larva at 24 hr. after feeding receives blood from another 4th-stage larva at 8 days after feeding it develops characters intermediate between those of the 4th and 5th instars. This is attributed to the juvenile hormone being introduced too early in the moulting cycle. The hormone balance is upset by abnormal temperatures. The 4th-stage larva will not moult at a temperature of 36° C. although the larvae can survive up to about 40° C. At temperatures a little below 36° C. moulting is somewhat delayed and the characters developed are slightly ‘adultoid’ (prothetely). This is attributed to slightly reduced activity of the corpus allatum. At temperatures below 20° C. moulting is greatly delayed and the characters developed are slightly ‘juvenile’ (metathetely). This is attributed to relatively increased activity of the corpus allatum. Low concentrations of oxygen (less than 5 %) have an effect similar to that of high temperature. If 5th-stage larvae of Rhodnius receive implants of corpora allata from mature adults of Periplaneta they develop into 6th-stage larvae and many of these subsequently into 7th-stage larvae. The ‘juvenile hormone’ appears to be the same in the two insects. No evidence could be obtained for the persistence of juvenile hormone in the blood from one instar of Rhodnius to the next. The hypothesis of an active elimination of juvenile hormone by the corpus allatum at the time of metamorphosis remains therefore unproven.


2021 ◽  
Vol 36 (5) ◽  
pp. 442-460
Author(s):  
Koustubh M. Vaze ◽  
Charlotte Helfrich-Förster

Circadian clocks schedule biological functions at a specific time of the day. Full comprehension of the clock function requires precise understanding of their entrainment to the environment. The phase of entrained clock is plastic, which depends on different factors such as the period of endogenous oscillator, the period of the zeitgeber cycle (T), and the proportion of light and darkness (day length). The circadian clock of fruit fly Drosophila melanogaster is able to entrain to a wide range of T-cycles and day lengths. Here, we investigated the importance of the neuropeptide Pigment-Dispersing Factor (PDF) for entrainment by systematically studying locomotor activity rhythms of Pdf 0 mutants and wild-type flies under different T-cycles (T22 to T32) and different day lengths (8, 12, and 16 hour [h]). Furthermore, we analysed PERIOD protein oscillations in selected groups of clock neurons in both genotypes under T24 and T32 at a day length of 16 h. As expected, we found that the phase of Drosophila’s evening activity and evening neurons advanced with increasing T in all the day lengths. This advance was much larger in Pdf 0 mutants (~7 h) than in wild-type flies causing (1) pronounced desynchrony between morning and evening neurons and (2) evening activity to move in the morning instead of the evening. Most interestingly, we found that the lights-off transition determines the phase of evening neurons in both genotypes and that PDF appears necessary to delay the evening neurons by ~3 h to their wild-type phase. Thus, in T32, PDF first delays the molecular cycling in the evening neurons, and then, as shown in previous studies, delays their neuronal firing rhythms to produce a total delay of ~7 h necessary for a wild-type evening activity phase. We conclude that PDF is crucial for appropriate phasing of Drosophila activity rhythm.


2016 ◽  
Vol 11 (1) ◽  
pp. 244-249
Author(s):  
Jacek Francikowski ◽  
Bartosz Baran ◽  
Anna Płachetka-Bożek ◽  
Michał Krzyżowski ◽  
Maria Augustyniak

AbstractIn this study, we aimed to evaluate whether exposure to caffeine in the early stages of development affect AdoR mRNA expression levels in the fruit fly (Drosophila melanogaster) and how this will relate to the developmental success of flies. Adenosine receptors are seen as the most important biochemical targets of caffeine. Simultaneously adenosine signaling orchestrates the development and growth of insects. We demonstrate that AdoR mRNA expression in D. melanogaster is persistent from early stages till imago. Strong alterations in AdoR expression were observed in larvae that had been treated with caffeine. However, after the imaginal molt, the differences in AdoR expression between the insects from all of the test groups evened out despite a wide range of developmental success in the groups. Taken together, these results suggest that caffeine affects the expression of its cellular targets even from the early stages of fruit fly development and thus there is a significantly lower larvae-to-adult survival rate. Moreover, we also proved that the expression of AdoR undergoes a peculiar reset during the maturation of D. melanogaster despite the conditions in which larvae developed.


2012 ◽  
Vol 58 (3) ◽  
pp. 348-355 ◽  
Author(s):  
N.Е. Gruntenko ◽  
O.V. Laukhina ◽  
E.V. Bogomolova ◽  
E.K. Karpova ◽  
P.N. Menshanov ◽  
...  

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2080 ◽  
Author(s):  
Perumal Subramanian ◽  
Jaime J. Jayapalan ◽  
Puteri S. Abdul-Rahman ◽  
Manjula Arumugam ◽  
Onn H. Hashim

Background.Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly,Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation inD. melanogaster.Materials and Methods.Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software.Results.A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of theD. melanogasterproteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription.Conclusion.Our data suggests that a wide range of proteins synthesized by the fruit fly,D. melanogaster, is under the regulation of the biological clock.


Genetics ◽  
1975 ◽  
Vol 81 (4) ◽  
pp. 749-756
Author(s):  
Warwick Estevam Kerr ◽  
Yukio Akahira ◽  
Conceição A Camargo

ABSTRACT Cell number and volume of corpora allata was determined for 8 phases of development, the first prepupal stage to adults 30 days old, in the social Apidae Melipona quadrifasciata. In the second prepupal stage a strong correlation was found between cell number and body weight (r=0.651**), and cell number and corpora allata volume in prepupal stage (r=0.535*), which indicates that juvenile hormone has a definite role in caste determination in Melipona. The distribution of the volume of corpus allatum suggest a 3:1 segregation between bees with high volume of corpora allata against low and medium volume. This implies that genes xa and xb code for an enzyme that directly participates in juvenile hormone production. It was also concluded that the number of cells in the second prepupal stage is more important than the weight of the prepupa for caste determination. A scheme summarizing the genic control of sex and caste determination in Melipona bees in the prepupal phase is given.


2021 ◽  
Author(s):  
Yosuke Mizuno ◽  
Eisuke Imura ◽  
Yoshitomo Kurogi ◽  
Yuko Shimadaigu-Niwa ◽  
Shu Kondo ◽  
...  

AbstractThe corpora allata (CA) are essential endocrine organs that biosynthesize and secrete the sesquiterpenoid hormone, namely juvenile hormone (JH), to regulate a wide variety of developmental and physiological events in insects. Previous studies had demonstrated that the CA are directly innervated with neurons in many insect species, implying the innervations to be important for regulating JH biosynthesis in response to internal physiology and external environments. While this is also true for the model organism,Drosophila melanogaster, which neurotransmitters are produced in the CA-projecting neurons are yet to be clarified. In this study onD. melanogaster, we aimed to demonstrate that a subset of neurons producing the neuropeptide hugin, the invertebrate counterpart of the vertebrate neuromedin U, directly projects to the adult CA. A synaptic vesicle marker in the hugin neurons was observed at their axon termini located on the CA, which were immunolabeled with a newly-generated antibody to the JH biosynthesis enzyme JH acidO-methyltransferase (JHAMT). We also found the CA-projecting hugin neurons to likely express a gene encoding the specific receptor for diuretic hormone 44 (Dh44). Moreover, our data suggested that the CA-projecting hugin neurons have synaptic connections with the upstream neurons producing Dh44. To the best of our knowledge, this is the first study to identify a specific neurotransmitter of the CA-projecting neurons inD. melanogaster, and to anatomically characterize a neuronal pathway of the CA-projecting neurons and their upstream neurons.


1983 ◽  
Vol 38 (9-10) ◽  
pp. 856-858 ◽  
Author(s):  
Hans-Joerg Ferenz ◽  
Ingrid Diehl

Abstract In Locusta migratoria the gonotrophic cycles are regulated by juvenile hormone. The cyclical changes of juvenile hormone synthesis in locust corpora allata seem to be regulated by a neuro-hormonal factor. Such an allatotropin could be extracted from corpora cardiaca and brains of Locusta migratoria. It is a small pronase-sensitive and heat-stable peptide. Extract of one corpus cardiacum stimulates corpus allatum biosynthetic activity in vitro 5 to 20-fold.


Sign in / Sign up

Export Citation Format

Share Document