scholarly journals A Missense Mutation rs781536408 (c.2395G>A) of TYK2 Affects Splicing and Causes Skipping of Exon18 in vivo

2021 ◽  
Vol 12 ◽  
Author(s):  
Suqing Chen ◽  
Peilin Wu ◽  
Bin Wu ◽  
Chenye Lin ◽  
Junhong Chen ◽  
...  

TYK2 variants can impact disease onset or progression. In our previous study, we identified abnormal splicing that happened near rs781536408 in the TYK2 gene. The purpose of this research was to examine the effect of the mutation on alternative splicing in vivo and in vitro. Whole exome sequencing was performed to identify the mutations followed by bidirectional Sanger sequencing. Then the minigene analysis was carried out based on HeLa and HEK293T cell lines. The results showed that rs781536408 (c.2395G>A, p.G799R) was homozygous in the patient, but heterozygous in parents. PCR amplification confirmed the abnormal splicing in the somatic cells of the patients, but not in the parents. Sanger sequencing results showed that there was a skipping of exon18 near the mutation. For minigene analysis, there was no difference between the wild-type and the mutant type in the two minigene construction strategies, indicating that mutation c.2395G>A had no effect on splicing in vitro. Combining the results of in vivo, we speculated that the effect of the mutation on splicing was not absolute, but rather in degree.

Genetics ◽  
1982 ◽  
Vol 102 (3) ◽  
pp. 557-569
Author(s):  
L M Wilkins ◽  
J A Brumbaugh ◽  
J W Moore

ABSTRACT The genetic control of pigmentation was analyzed using five unlinked mutants, namely, c, pk, Bl, ey and I. Each mutant blocks or reduces pigmentation. Chick melanocyte cultures of each mutant type were fused to produce all ten possible pair combinations of nondividing heterokaryons. Heterokaryons were identified autoradiographically. (One partner in each pair was labeled with 3H-thymidine.) Crosses produced comparable pairs of double heterozygotes that were analyzed in vivo and in vitro. Heterokaryon pairs were compared to their corresponding double heterozygotes.—Some combinations showed complementation and produced wild-type pigment. Others showed noncomplementation having little or no pigment. Double heterozygotes complemented each other except in the cases involving the dominant mutant, I. Four heterokaryon pairs gave different results from their corresponding double heterozygotes. The pk-Bl and pk-ey combinations failed to complement as heterokaryons but did complement as double heterozygotes. On the other hand, the I-c and I-Bl combinations complemented as heterokaryons but not as double heterozygotes. Based on these differences it is hypothesized that the pk and I loci are nuclearly restricted regulatory elements. Examples in the literature from other systems are cited to support such a hypothesis.


2020 ◽  
Author(s):  
Xinyue Zhao ◽  
Keqiang Liu ◽  
Wenshuai Xu ◽  
Meng Xiao ◽  
Qianli Zhang ◽  
...  

Abstract Purpose To identify potential pathogenic mutations in a Chinese patient with cystic fibrosis (CF) and subsequently study its splicing effect on cystic fibrosis transmembrane conductance regulator (CFTR) mRNA in vitro. Methods Genomic DNA was extracted from peripheral blood leukocytes of the patient and his parents. To detect the possible pathogenic mutations in this patient, Sanger sequencing was conducted on all 27 coding exons of CFTR and their flanking intronic regions. Minigene constructs of the wild type and the identified mutant type were produced and transfected into HEK293T cells. Total RNA was extracted and reverse-transcribed into cDNA, with which as the template polymerase chain reaction (PCR) was performed to amplify the corresponding region. Original TA cloning and Sanger sequencing of the resultant PCR products were performed to analyze their splicing patterns. Results The patient is a compound heterozygote of c.2909G>A, p.Gly970Asp in exon 18 and c.1210-3C>G in cis with a poly-T of 5T (T5) sequence, 3 bp upstream in intron 9. As reported, c.2909G>A, p.Gly970Asp is considered to be the most frequent CFTR mutation among Chinese CF patients. c.1210-3C>G, a variant adjacent to the 3’ splice site, may affect splicing and reduce the levels of normal mRNA. We validated this hypothesis by a minigene assay in vitro, which showed that the wild-type plasmid containing c.1210-3C together with the T7 sequence produced a normal transcript as well as a partial exon 10-skipping transcript, whereas the mutant plasmid containing c.1210-3G in cis with the T5 sequence caused almost all mRNA to skip exon 10. Conclusion c.1210-3C>G, newly identified in our patient, in combination with the T5 sequence in cis affects CFTR gene splicing and produces nearly no normal transcripts in vitro, which makes it a pathogenic mutation in this patient. Moreover, this patient carries a p.Gly970Asp mutation, which reinforces the high frequency of this mutation in Chinese CF patients.


2020 ◽  
Vol 22 (10) ◽  
pp. 675-682 ◽  
Author(s):  
Jie Yin ◽  
Zhongping Qin ◽  
Kai Wu ◽  
Yufei Zhu ◽  
Landian Hu ◽  
...  

Backgrounds and Objective: Blue rubber bleb nevus syndrome (BRBN) or Bean syndrome is a rare Venous Malformation (VM)-associated disorder, which mostly affects the skin and gastrointestinal tract in early childhood. Somatic mutations in TEK have been identified from BRBN patients; however, the etiology of TEK mutation-negative patients of BRBN need further investigation. Method: Two unrelated sporadic BRBNs and one sporadic VM were firstly screened for any rare nonsilent mutation in TEK by Sanger sequencing and subsequently applied to whole-exome sequencing to identify underlying disease causative variants. Overexpression assay and immunoblotting were used to evaluate the functional effect of the candidate disease causative variants. Results: In the VM case, we identified the known causative somatic mutation in the TEK gene c.2740C>T (p.Leu914Phe). In the BRBN patients, we identified two rare germline variants in GLMN gene c.761C>G (p.Pro254Arg) and c.1630G>T(p.Glu544*). The GLMN-P254R-expressing and GLMN-E544X-expressing HUVECs exhibited increased phosphorylation of mTOR-Ser-2448 in comparison with GLMN-WTexpressing HUVECs in vitro. Conclusion: Our results demonstrated that rare germline variants in GLMN might contribute to the pathogenesis of BRBN. Moreover, abnormal mTOR signaling might be the pathogenesis mechanism underlying the dysfunction of GLMN protein.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kyoko Yoshizaki ◽  
Akihiro Hirata ◽  
Hiroyuki Matsushita ◽  
Naohito Nishii ◽  
Mifumi Kawabe ◽  
...  

Abstract Background The prevalence of gastrointestinal (GI) neoplastic polyps in Jack Russell terriers (JRTs) has increased in Japan since the late 2000s. Recently, we demonstrated that JRTs with GI polyps harbor identical germline variant in the APC gene (c.[462_463delinsTT]) in the heterozygous state. Thus, this disease is an autosomal dominant hereditary disorder. Although the affected JRTs have distinct features, such as the development of multiple GI polyps and an early age of disease onset, genetic testing is indispensable for a definitive diagnosis. Here, polymerase chain reaction (PCR)-based assays capable of detecting germline APC variant were designed and validated using synthetic wild-type and mutant DNAs and genomic DNAs from carrier and non-carrier dogs. Result First, the PCR-restriction fragment length polymorphism (PCR-RFLP) assay was developed by taking advantage of the germline APC variant creating a new restriction site for MseI. In the PCR-RFLP assay, the 156-bp region containing the variant site was amplified by PCR and subsequently digested with MseI, yielding diagnostic 51 and 58 bp fragments from the mutant allele and allowing determination of the APC genotypes. It was possible to determine the genotypes using genomic DNA extracted from the peripheral blood, buccal swab, or formalin-fixed paraffin-embedded tissue. Next, a TaqMan duplex real-time PCR assay was developed, where a 78-bp region flanking the variant was amplified in the presence of wild-type allele- and mutant allele-specific fluorescent probes. Using blood-derived DNA, altogether 40 cycles of PCR amplification determined the APC genotypes of all examined samples by measuring the fluorescence intensities. Importantly, false-positive and false-negative errors were never detected in both assays. Conclusion In this study, we developed highly reliable genetic tests for hereditary GI polyposis in JRTs, providing accurate assessment of the presence of the causative germline APC variant. The genotyping assays could contribute to the diagnosis and prevention of hereditary GI polyposis in dogs.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 320
Author(s):  
Thaís Pereira da Silva ◽  
Fernando Jacomini de Castro ◽  
Larissa Vuitika ◽  
Nayanne Louise Costacurta Polli ◽  
Bruno César Antunes ◽  
...  

Phospholipases-D (PLDs) found in Loxosceles spiders’ venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents—L. gaucho and L. laeta—were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1631-1640 ◽  
Author(s):  
Janet R Donaldson ◽  
Charmain T Courcelle ◽  
Justin Courcelle

Abstract Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


Sign in / Sign up

Export Citation Format

Share Document