scholarly journals Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinman Zhong ◽  
Hang Wu ◽  
Xiaoyin Bu ◽  
Weiru Li ◽  
Shengchun Cai ◽  
...  

Acute myeloid leukemia (AML) is a highly heterogeneous hematologic neoplasm with poor survival outcomes. However, the routine clinical features are not sufficient to accurately predict the prognosis of AML. The expression of hypoxia-related genes was associated with survival outcomes of a variety of hematologic and lymphoid neoplasms. We established an 18-gene signature-based hypoxia-related prognosis model (HPM) and a complex model that consisted of the HPM and clinical risk factors using machine learning methods. Both two models were able to effectively predict the survival of AML patients, which might contribute to improving risk classification. Differentially expressed genes analysis, Gene Ontology (GO) categories, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal the underlying functions and pathways implicated in AML development. To explore hypoxia-related changes in the bone marrow immune microenvironment, we used CIBERSORT to calculate and compare the proportion of 22 immune cells between the two groups with high and low hypoxia-risk scores. Enrichment analysis and immune cell composition analysis indicated that the biological processes and molecular functions of drug metabolism, angiogenesis, and immune cell infiltration of bone marrow play a role in the occurrence and development of AML, which might help us to evaluate several hypoxia-related metabolic and immune targets for AML therapy.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4467-4467
Author(s):  
Maximilian Christopeit ◽  
Karolin Miersch ◽  
Evgeny Klyuchnikov ◽  
Mascha Binder ◽  
Francis Ayuk ◽  
...  

Abstract Abstract 4467 Background: Relapse incidence (RI) and non-relapse mortality (NRM) are competing risks limiting overall survival (OS) after allogeneic stem cell transplantation (SCT) in acute myeloid leukemia (AML). Disease and transplant specific factors predicting relapse like measurement of minimal residual disease (MRD) and chimerism analysis are widely used to aid prophylactic and preemptive treatment decisions. Prediction of NRM mostly relies on pretransplant features. Although most transplant centers routinely perform bone marrow (BM) cytomorphology after SCT for AML, the impact of factors beyond blast count is not well studied. Study Design: We analyzed frequencies and prognostic impact of dysplasia and cellularity upon BM cytomorphology of 112 patients (60 m/52 f, median age 53 [range 17–72] years) with AML at 1st manifestation/ relapse at day 30 (d30) and day 100 (d100) after SCT. Using peripheral blood as main graft source (n=106), donors were unrelated in 87 cases, related in 25. Conditioning was reduced (RIC, n=72) or myeloablative (MAC, n=40). All patients received G-CSF from day 5 until stable engraftment was achieved. Dysplasia was assessed following WHO criteria with different thresholds (10%, 20%, 50%) to define a hematopoietic lineage as dysplastic. We performed a correlation of dysplasia and age-adapted cellularity with outcome measures, calculating RI and NRM as competing risks. Only patients who achieved blast clearance on d30 after SCT were included in the study. Patients who developed hematological relapse between d30 and d100 were only evaluated for d30. At d30 (d100), BM aspirates from 75 (65) patients were available for morphologic evaluation. Result: Dysplasia was a frequent event both at d30 and d100, with ≥10% dysplastic features in granulopoiesis in 25.0% of cases at d30 (31% d100), in erythropoiesis in 34.6% of cases at d30 (43.6% d100) and in megakaryopoiesis in 47.7% of cases at d30 (63.5% d100). Overall, cellularity at d30 was increased in 17.3% (d 100: 6.5%), reduced in 37.3% (d100: 38.7), and normal in 45.3% (d100: 54.8%). No significant correlation with CMV reactivation or with the type of immunosuppression (cyclosporine/ methotrexate versus cyclosporine/ mycophenolic acid) was noted. Cumulative incidences of 2-year-RI and 2-year-NRM were 34% (95% CI, 24%-44%) and 17% (95% CI, 9%-25%). Dysplasia both at d30 and d100 did not correlate with OS or RI. Yet, a statistically significant correlation of normal overall cellularity at d30 with less relapses (RI 20.6%) when compared with reduced overall cellularity (RI 32.1%) or increased overall cellularity (RI 76.9%; p=0.001) was observed. Estimated 2-year-OS was 59% in pts with normal overall cellularity versus 31.4% (reduced) and 44.0% (increased), respectively (p=0.009). The same results, favoring normal cellularity, were observed for each lineage (granulopoiesis, erythropoiesis, megakaryopoiesis). Conversely, increased overall cellularity at d30 correlated with lower NRM (8.3%) when compared to normal (NRM 23.7%) and reduced overall cellularity (NRM 39.6%, p=0.031). Thus, whereas reduced overall cellularity at d30 correlated both with higher RI and higher NRM, the impact of increased cellularity on survival was less clear. The analysis of subdistributive hazards in the competing risk factor model revealed a cumulative RI of 62% (95%CI 35%-89%, HR 6.68, p=0.00014) for increased cellularity, making it the most potent hazard in this analysis. Presence of an informative sample was of prognostic value, too (2-year-OS/ NRM 54.7%/ 80.4% for “evaluable” versus 20%/ 36.9% for “not evaluable” due to low cellularity, p<0.001). Cellularity at d100 showed no significant correlation with survival outcomes. We found no correlation of either dysplasia or cellularity with the pretransplant cytogenetic risk group and CMV serostatus. In this study, patients with AML who achieved normal cellularity early in the post-transplant period had improved survival outcomes and a reduced relapsed incidence as compared to patients with abnormal cellularity in bone marrow aspirates. Conclusion: These data suggest that cellularity of BM cytomorphology at d30 after allogeneic SCT aids to assess risk of relapse and NRM in transplant recipients with AML. At this time, it can only be speculated whether underlying persistent leukemia below the microscopic level might be associated with disturbed BM cellularity. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2020 ◽  
Vol 4 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Oscar Brück ◽  
Olli Dufva ◽  
Helena Hohtari ◽  
Sami Blom ◽  
Riku Turkki ◽  
...  

Abstract The immunologic microenvironment in various solid tumors is aberrant and correlates with clinical survival. Here, we present a comprehensive analysis of the immune environment of acute myeloid leukemia (AML) bone marrow (BM) at diagnosis. We compared the immunologic landscape of formalin-fixed paraffin-embedded BM trephine samples from AML (n = 69), chronic myeloid leukemia (CML; n = 56), and B-cell acute lymphoblastic leukemia (B-ALL) patients (n = 52) at diagnosis to controls (n = 12) with 30 immunophenotype markers using multiplex immunohistochemistry and computerized image analysis. We identified distinct immunologic profiles specific for leukemia subtypes and controls enabling accurate classification of AML (area under the curve [AUC] = 1.0), CML (AUC = 0.99), B-ALL (AUC = 0.96), and control subjects (AUC = 1.0). Interestingly, 2 major immunologic AML clusters differing in age, T-cell receptor clonality, and survival were discovered. A low proportion of regulatory T cells and pSTAT1+cMAF− monocytes were identified as novel biomarkers of superior event-free survival in intensively treated AML patients. Moreover, we demonstrated that AML BM and peripheral blood samples are dissimilar in terms of immune cell phenotypes. To conclude, our study shows that the immunologic landscape considerably varies by leukemia subtype suggesting disease-specific immunoregulation. Furthermore, the association of the AML immune microenvironment with clinical parameters suggests a rationale for including immunologic parameters to improve disease classification or even patient risk stratification.


2021 ◽  
Author(s):  
Jiao Yang ◽  
Fei Lu ◽  
Guangxin Ma ◽  
Yihua Pang ◽  
Yanan Zhao ◽  
...  

Abstract Background: Cadherin-23 (CDH23), which plays an important role in intercellular adhesion, is involved in the progression of several types of cancer. However, the biological functions and impact of CDH23 expression on the prognosis of patients with acute myeloid leukemia (AML) are yet to be explored. Herein, we aim to characterize the role and molecular functions of CDH23 in AML.Methods: The expression level of CDH23 were assessed in patients with AML by Gene Expression Profiling Interactive Analysis (GEPIA). The prognostic value of CDH23 was analyzed via GEPIA and LinkedOmics. Correlation analysis and biology function analysis were conducted by LinkedOmics and GeneMANIA database. Relationship of CDH23 with immune infiltration level was detected by TIMER. Results: In the present study, aberrant overexpression of CDH23 was first confirmed in patients with AML and contributed to poor prognosis. Notably, we observed a negative correlation between CDH23 mRNA expression and immune cell infiltration by calculating the ESTIMATE score. In addition, functional enrichment analysis confirmed that CDH23 plays a crucial role in tumor immunity. Conclusions: Our findings indicate that upregulation of CDH23 expression corresponded to shortened overall survival of patients with AML. CDH23 may be involved in mediating tumor immunity, and this highlights the potential of CDH23 as a therapeutic target in AML.


2015 ◽  
Vol 33 (sup1) ◽  
pp. 115-115
Author(s):  
Jhumur Pani ◽  
Kumar Gautam Singh ◽  
Anjani Kumar Singh ◽  
Fanish Kumar Pandey ◽  
Himanshu Narayan Singh

2019 ◽  
Vol 18 (14) ◽  
pp. 1936-1951 ◽  
Author(s):  
Raghav Dogra ◽  
Rohit Bhatia ◽  
Ravi Shankar ◽  
Parveen Bansal ◽  
Ravindra K. Rawal

Background: Acute myeloid leukemia is the collective name for different types of leukemias of myeloid origin affecting blood and bone marrow. The overproduction of immature myeloblasts (white blood cells) is the characteristic feature of AML, thus flooding the bone marrow and reducing its capacity to produce normal blood cells. USFDA on August 1, 2017, approved a drug named Enasidenib formerly known as AG-221 which is being marketed under the name Idhifa to treat R/R AML with IDH2 mutation. The present review depicts the broad profile of enasidenib including various aspects of chemistry, preclinical, clinical studies, pharmacokinetics, mode of action and toxicity studies. Methods: Various reports and research articles have been referred to summarize different aspects related to chemistry and pharmacokinetics of enasidenib. Clinical data was collected from various recently published clinical reports including clinical trial outcomes. Result: The various findings of enasidenib revealed that it has been designed to allosterically inhibit mutated IDH2 to treat R/R AML patients. It has also presented good safety and efficacy profile along with 9.3 months overall survival rates of patients in which disease has relapsed. The drug is still under study either in combination or solely to treat hematological malignancies. Molecular modeling studies revealed that enasidenib binds to its target through hydrophobic interaction and hydrogen bonding inside the binding pocket. Enasidenib is found to be associated with certain adverse effects like elevated bilirubin level, diarrhea, differentiation syndrome, decreased potassium and calcium levels, etc. Conclusion: Enasidenib or AG-221was introduced by FDA as an anticancer agent which was developed as a first in class, a selective allosteric inhibitor of the tumor target i.e. IDH2 for Relapsed or Refractory AML. Phase 1/2 clinical trial of Enasidenib resulted in the overall survival rate of 40.3% with CR of 19.3%. Phase III trial on the Enasidenib is still under process along with another trial to test its potency against other cell lines. Edasidenib is associated with certain adverse effects, which can be reduced by investigators by designing its newer derivatives on the basis of SAR studies. Hence, it may come in the light as a potent lead entity for anticancer treatment in the coming years.


2021 ◽  
Vol 22 (13) ◽  
pp. 6857
Author(s):  
Samantha Bruno ◽  
Manuela Mancini ◽  
Sara De Santis ◽  
Cecilia Monaldi ◽  
Michele Cavo ◽  
...  

Acute myeloid leukemia (AML) is a hematologic malignancy caused by a wide range of alterations responsible for a high grade of heterogeneity among patients. Several studies have demonstrated that the hypoxic bone marrow microenvironment (BMM) plays a crucial role in AML pathogenesis and therapy response. This review article summarizes the current literature regarding the effects of the dynamic crosstalk between leukemic stem cells (LSCs) and hypoxic BMM. The interaction between LSCs and hypoxic BMM regulates fundamental cell fate decisions, including survival, self-renewal, and proliferation capacity as a consequence of genetic, transcriptional, and metabolic adaptation of LSCs mediated by hypoxia-inducible factors (HIFs). HIF-1α and some of their targets have been associated with poor prognosis in AML. It has been demonstrated that the hypoxic BMM creates a protective niche that mediates resistance to therapy. Therefore, we also highlight how hypoxia hallmarks might be targeted in the future to hit the leukemic population to improve AML patient outcomes.


Sign in / Sign up

Export Citation Format

Share Document