scholarly journals Genome-Wide Identification and Analysis of the NF-Y Gene Family in Potato (Solanum tuberosum L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Liu ◽  
Yuanming Li ◽  
Jinyong Zhu ◽  
Wenjing Ma ◽  
Zhitao Li ◽  
...  

Nuclear factor Y (NF-Y) is a ubiquitous transcription factor in eukaryotes, which is composed of three subunits (NF-YA, NF-YB, and NF-YC). NF-Y has been identified as a key regulator of multiple pathways in plants. Although the NF-Y gene family has been identified in many plants, it has not been reported in potato (Solanum tuberosum). In the present study, a total of 41 NF-Y proteins in potato (StNF-Ys) were identified, including 10 StNF-YA, 22 StNF-YB, and nine StNF-YC subunits, and their distribution on chromosomes, gene structure, and conserved motif was analyzed. A synteny analysis indicated that 14 and 38 pairs of StNF-Y genes were orthologous to Arabidopsis and tomato (Solanum lycopersicum), respectively, and these gene pairs evolved under strong purifying selection. In addition, we analyzed the expression profiles of NF-Y genes in different tissues of double haploid (DM) potato, as well as under abiotic stresses and hormone treatments by RNA-seq downloaded from the Potato Genome Sequencing Consortium (PGSC) database. Furthermore, we performed RNA-seq on white, red, and purple tuber skin and flesh of three potato cultivars at the tuber maturation stage to identify genes that might be involved in anthocyanin biosynthesis. These results provide valuable information for improved understanding of StNF-Y gene family and further functional analysis of StNF-Y genes in fruit development, abiotic stress tolerance, and anthocyanin biosynthesis in potato.

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Zhen Liu ◽  
Yuhui Liu ◽  
Jeffrey A. Coulter ◽  
Baoyun Shen ◽  
Yuanming Li ◽  
...  

WD40 proteins, also known as WD40 domain proteins, constitute a large gene family in eukaryotes and play multiple roles in cellular processes. However, systematic identification and analysis of WD40 proteins have not yet been reported in potato (Solanum tuberosum L.). In the present study, 178 potato WD40 (StWD40) genes were identified and their distribution on chromosomes, gene structure, and conserved motifs were assessed. According to their structural and phylogenetic protein features, these 178 StWD40 genes were classified into 14 clusters and 10 subfamilies. Collinearity analysis showed that segmental duplication events played a major role in the expansion of the StWD40 gene family. Synteny analysis indicated that 45 and 23 pairs of StWD40 genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and that these gene pairs evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-specific expression and abiotic stress-responsive StWD40 genes in doubled monoploid potato (DM). Furthermore, we further analyzed the WD40 genes might be involved in anthocyanin biosynthesis and drought stress in tetraploid potato cultivars based on RNA-seq data. In addition, a protein interaction network of two homologs of Arabidopsis TTG1, which is involved in anthocyanin biosynthesis, was constructed to identify proteins that might be related to anthocyanin biosynthesis. The result showed that there were 112 pairs of proteins interacting with TTG1, with 27 being differentially expressed in pigmented tissues. This study indicates that WD40 proteins in potato might be related to anthocyanin biosynthesis and abiotic stress responses.


2020 ◽  
Vol 24 (5) ◽  
pp. 465-473
Author(s):  
I. V. Totsky ◽  
I. V. Rozanova ◽  
A. D. Safonova ◽  
A. S. Batov ◽  
Yu. A. Gureeva ◽  
...  

Potato (Solanum tuberosum L.) is one of the most important food crops in the world. The genome of this potato species is autotetraploid and has a high level of heterozygosity, also this potato species is a cross-pollinated plant. These characteristics complicate the genetic analysis and breeding process. The tuber’s eye depth is an important trait that affects the suitability of potato varieties for processing. Potato breeding for this trait is based on phenotypic assessment. Identification of the loci that control tuber eye depth would allow diagnostic markers for the marker-assisted selection to be created. The aim of this study is to search for loci associated with the eye depth by analyzing Solanum tuberosum varieties from the GenAgro collection of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, genotyped using the Illumina 22K SNP potato array DNA chip. The 24 significant markers associated with the “eye depth” trait were identified using 15,214 SNP markers genotyped with the Illumina 22K SNP potato array chip and the general linear model (GLM) taking into account the population structure. Data obtained showed the presence of SNPs in four genomic regions: on chromosome 4 (1 marker in the 3.92 Mb area), 5 (1 marker in the 4.67 Mb area) and 10 (1 marker in the 4.87 Mb area and 21 markers in the region between 48.1–48.9 Mb). The results of localization in the region 48.1–48.9 Mb of chromosome 10 correspond to previously published studies, the remaining three regions were detected for the first time. DNA sections containing SNPs linked to the tuber’s eye depth were studied in the SolTub_3.0 potato genome assembly (https:// plants.ensembl.org/). KASP markers were developed based on the data obtained. It will be possible to screen the breeding material and to breed the varieties more effectively using current markers associated with a shallow tuber’s eye depth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katie Emelianova ◽  
Andrea Martínez Martínez ◽  
Lucia Campos-Dominguez ◽  
Catherine Kidner

AbstractBegonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.


2016 ◽  
Vol 88 (2) ◽  
pp. 941-950 ◽  
Author(s):  
IVANESA G.M. SOARES ◽  
EDVANE B. SILVA ◽  
ADEMIR J. AMARAL ◽  
ERILANE C.L. MACHADO ◽  
JOSENILDA M. SILVA

ABSTRACT This work evaluated the effects of ionizing radiation on the physico-chemical and sensory characteristics of the potato cultivar Ágata (Solanum tuberosum L.), including budding and deterioration, with the end goal of increasing shelf life. For this, four groups of samples were harvested at the maturation stage. Three of them were separately exposed to a Co-60 source, receiving respective doses of 0.10, 0.15 and 2.00 kGy, while the non-irradiated group was kept as a control. All samples were stored for 35 days at 24 °C (± 2) and at 39% relative humidity. The following aspects were evaluated: budding, rot, loss of weight, texture, flesh color, moisture, external and internal appearance, aroma, soluble solids, titratable acidity, vitamin C, protein, starch and glucose. The results indicated that 0.15 kGy was the most effective dose to reduce sprouting and post-harvest losses, under the conditions studied.


Plant Omics ◽  
2018 ◽  
pp. 120-127 ◽  
Author(s):  
Yong Xiao ◽  
Haikuo Fan ◽  
Jianwei Ma ◽  
Xintao Lei ◽  
Yong Wang ◽  
...  

The NAC gene family encode transcriptional regulator that contain a conserved NAM domain near the N-terminus and participate in the regulation of plant development and response to different abiotic stresses. In this study, 129 EgNAC genes were identified from the genome sequence of Elaeis guineensis and 97 EgNAC located on the chromsomes with an average of 4.56 EgNAC genes per chromosome. About 60% of EgNACs contained three exons and the gene sizes varied from 541 bp to 37,294 bp. Genomic duplication analysis showed that 10 EgNAC genes were involved in segmental duplication events and two genes were from tandem duplication. The gene expression profiles of EgNACs based on transcriptome database for different oil palm tissues showed that 30 EgNACs with low or no expression and 24 EgNACs were specifically expressed in one tissue. The trancriptome comparison between the control and cold stress samples demonstrated that thirty-seven EgNACs were down-regulated and 82 EgNACs were up-regulated under cold stress. Further RT-qPCR showed that the expression for 24 out of 32 validated EgNACs were induced under both cold, drought and salt stresses. Our comprehensive analysis of EgNAC genes has provided clues for candidate genes involved in abiotic stress tolerance.


2021 ◽  
Vol 22 (24) ◽  
pp. 13535
Author(s):  
Rui Ma ◽  
Weigang Liu ◽  
Shigui Li ◽  
Xi Zhu ◽  
Jiangwei Yang ◽  
...  

The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2019 ◽  
Vol 20 (19) ◽  
pp. 4847 ◽  
Author(s):  
Wenjun Sun ◽  
Zhaotang Ma ◽  
Hui Chen ◽  
Moyang Liu

As an important nongrain crop, the growth and yield of potato (Solanum tuberosum L.) is often affected by an unfavorable external environment in the process of cultivation. The MYB family is one of the largest and most important gene families, participating in the regulation of plant growth and development and response to abiotic stresses. Several MYB genes in potato that regulate anthocyanin synthesis and participate in abiotic stress responses have been identified. To identify all Solanum tuberosum L. MYB (StMYB) genes involved in hormone or stress responses to potentially regulate potato growth and development, we identified the MYB gene family at the genome-wide level. In this work, 158 StMYB genes were found in the potato genome. According to the amino acid sequence of the MYB domain and gene structure, the StMYB genes were divided into R2R3-MYB and R1R2R3-MYB families, and the R2R3-MYB family was divided into 20 subgroups (SGs). The expression of 21 StMYB genes from different SGs in roots, stems, leaves, flowers, shoots, stolons, young tubers, and mature tubers was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression patterns of StMYB genes in potatoes treated with abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin acid 3 (GA3), NaCl, mannitol, and heat were also measured. We have identified several potential candidate genes that regulate the synthesis of potato flavonoids or participate in hormone or stress responses. This work provides a comprehensive understanding of the MYB family in potato and will lay a foundation for the future investigation of the potential functions of StMYB genes in the growth and development of potato.


2018 ◽  
Vol 19 (11) ◽  
pp. 3637 ◽  
Author(s):  
Xiaoshuang Li ◽  
Bei Gao ◽  
Daoyuan Zhang ◽  
Yuqing Liang ◽  
Xiaojie Liu ◽  
...  

Bryum argenteum is a desert moss which shows tolerance to the desert environment and is emerging as a good plant material for identification of stress-related genes. AP2/ERF transcription factor family plays important roles in plant responses to biotic and abiotic stresses. AP2/ERF genes have been identified and extensively studied in many plants, while they are rarely studied in moss. In the present study, we identified 83 AP2/ERF genes based on the comprehensive dehydrationrehydration transcriptomic atlas of B. argenteum. BaAP2/ERF genes can be classified into five families, including 11 AP2s, 43 DREBs, 26 ERFs, 1 RAV, and 2 Soloists. RNA-seq data showed that 83 BaAP2/ERFs exhibited elevated transcript abundances during dehydration–rehydration process. We used RT-qPCR to validate the expression profiles of 12 representative BaAP2/ERFs and confirmed the expression trends using RNA-seq data. Eight out of 12 BaAP2/ERFs demonstrated transactivation activities. Seven BaAP2/ERFs enhanced salt and osmotic stress tolerances of yeast. This is the first study to provide detailed information on the identification, classification, and functional analysis of the AP2/ERFs in B. argenteum. This study will lay the foundation for the further functional analysis of these genes in plants, as well as provide greater insights into the molecular mechanisms of abiotic stress tolerance of B. argenteum.


Sign in / Sign up

Export Citation Format

Share Document