scholarly journals Identification of Two Immune Related Genes Correlated With Aberrant Methylations as Prognosis Signatures for Renal Clear Cell Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi-Yong Yao ◽  
Chaoqung Xing ◽  
Yuan-Wu Liu ◽  
Xiao-Liang Xing

Almost 75% of renal cancers are renal clear cell carcinomas (KIRC). Accumulative evidence indicates that epigenetic dysregulations are closely related to the development of KIRC. Cancer immunotherapy is an effective treatment for cancers. The aim of this study was to identify immune-related differentially expressed genes (IR-DEGs) associated with aberrant methylations and construct a risk assessment model using these IR-DEGs to predict the prognosis of KIRC. Two IR-DEGs (SLC11A1 and TNFSF14) were identified by differential expression, correlation analysis, and Cox regression analysis, and risk assessment models were established. The area under the receiver operating characteristic (ROC) curve (AUC) was 0.6907. In addition, we found that risk scores were significantly associated with 31 immune cells and factors. Our present study not only shows that two IR-DEGs can be used as prognosis signatures for KIRC, but also provides a strategy for the screening of suitable prognosis signatures associated with aberrant methylation in other cancers.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-Liang Xing ◽  
Zhi-Yong Yao ◽  
Jialan Ou ◽  
Chaoqun Xing ◽  
Feng Li

Abstract Background Ferroptosis is a recently recognised new type of cell death which may be a potential target for cancer therapy. In the present study, we aimed to screen ferroptosis-related differentially expressed long non-coding RNAs as biomarkers to predict the outcome of kidney renal clear cell carcinoma. Methods RNAseq count data and corresponding clinical information were obtained from the Cancer Genome Atlas database. Lists of ferroptosis-related genes and long non-coding RNAs were obtained from the FerrDb and GENCODE databases, respectively. The candidate prognostic signatures were screened by Cox regression analyses and least absolute shrinkage and selection operator analyses. Results Three ferroptosis-related long non-coding RNAs (DUXAP8, LINC02609, and LUCAT1) were significantly correlated with the overall survival of kidney renal clear cell carcinoma independently. Kidney renal clear cell carcinoma patients with high-risk values displayed worse OS. Meanwhile, the expression of these three ferroptosis-related long non-coding RNAs and their risk scores were significantly correlated with clinicopathological features. Principal component analyses showed that patients with kidney renal clear cell carcinoma have differential risk values were well distinguished by the three ferroptosis-related long non-coding RNAs. Conclusions The present study suggests that the risk assessment model constructed by these three ferroptosis-related long non-coding RNAs could accurately predict the outcome of kidney renal clear cell carcinoma. We also provide a novel perspective for cancer prognosis screening.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Chen ◽  
Yuxiang Dong ◽  
Yitong Pan ◽  
Yuhan Zhang ◽  
Ping Liu ◽  
...  

Abstract Background Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. Methods The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. Results In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. Conclusion In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients.


2021 ◽  
Author(s):  
Axiu Zheng ◽  
Jianrong Bai ◽  
Yanping Ha ◽  
Bingshu Wang ◽  
Yuan Zou ◽  
...  

Abstract Background Stonin 1 (STON1) is an endocytic protein but its role in cancer remains unclear. Here, we investigated the role of STON1 in kidney renal clear cell carcinoma (KIRC). Methods We undertook bioinformatics analyses of a series of public databases to determine the expression and clinical significance of STON1 in KIRC and focused on STON1-related immunomodulator and survival signatures. A nomogram model integrating clinicopathological characteristics and risk scores for KIRC was established and validated. Results Through TGCA and GEO databases, STON1 mRNA was found to be significantly downregulated in KIRC compared with normal controls, and decreased STON1 was related to grade, TNM stage, distant metastasis, and vital status of KIRC. Furthermore, OncoLnc, UALCAN, Kaplan–Meier, and GEPIA2 analyses supported that KIRC patients with high STON1 expression had better overall survival. STON1 was positively associated with mismatch proteins including MLH1, PMS2, MSH2, MSH6 and EpCAM, and was negatively correlated with tumor mutational burden. Interestingly, arm-level deletion of STON1 was clearly related to the abundance of immune cells and the infiltration abundance in the majority of 26 immune cell types that were positively related to STON1 mRNA level in the TIMER database. The TISIDB database revealed 21 immunostimulators and 10 immunoinhibitors that were obviously related to STON1 in KIRC. In univariate and multivariate Cox regression analyses, CTLA4 , KDR , LAG3 , PDCD1 , HHLA2 , TNFRSF25 , and TNFSF14 were screened to establish a risk score model, and the low-risk group had a better prognosis for KIRC. Furthermore, a nomogram integrating clinicopathological characteristics and risk score had better accuracy and practicability in predicating the survival of KIRC patients. Conclusions Decreased STON1 expression in KIRC leads to clinical progression and poor survival. Mechanically, loss of STON1 is associated with the aberrant immune microenvironment in KIRC. Integrated clinicopathological characteristics and risk score derived from STON1 -related immunomodulators can aid the prediction of KIRC survival.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guangzhen Wu ◽  
Yingkun Xu ◽  
Chenglin Han ◽  
Zilong Wang ◽  
Jiayi Li ◽  
...  

Purpose. To construct a survival model for predicting the prognosis of patients with kidney renal clear cell carcinoma (KIRC) based on gene expression related to immune response regulation. Materials and Methods. KIRC mRNA sequencing data and patient clinical data were downloaded from the TCGA database. The pathways and genes involved in the regulation of the immune response were identified from the GSEA database. A single factor Cox analysis was used to determine the association of mRNA in relation to patient prognosis P < 0.05 . The prognostic risk model was further established using the LASSO regression curve. The survival prognosis model was constructed, and the sensitivity and specificity of the model were evaluated using the ROC curve. Results. Compared with normal kidney tissues, there were 28 dysregulated mRNA expressions in KIRC tissues P < 0.05 . Univariate Cox regression analysis revealed that 12 mRNAs were related to the prognosis of patients with renal cell carcinoma. The LASSO regression curve drew a risk signature consisting of six genes: TRAF6, FYN, IKBKG, LAT2, C2, IL4, EREG, TRAF2, and IL12A. The five-year ROC area analysis (AUC) showed that the model has good sensitivity and specificity (AUC >0.712). Conclusion. We constructed a risk prediction model based on the regulated immune response-related genes, which can effectively predict the survival of patients with KIRC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yucheng Qian ◽  
Jingsun Wei ◽  
Wei Lu ◽  
Fangfang Sun ◽  
Maxwell Hwang ◽  
...  

PurposeWe focused on immune-related genes (IRGs) derived from transcriptomic studies, which had the potential to stratify patients’ prognosis and to establish a risk assessment model in colorectal cancer.SummaryThis article examined our understanding of the molecular pathways associated with intratumoral immune response, which represented a critical step for the implementation of stratification strategies toward the development of personalized immunotherapy of colorectal cancer. More and more evidence shows that IRGs play an important role in tumors. We have used data analysis to screen and identify immune-related molecular biomarkers of colon cancer. We selected 18 immune-related prognostic genes and established models to assess prognostic risks of patients, which can provide recommendations for clinical treatment and follow-up. Colorectal cancer (CRC) is a leading cause of cancer-related death in human. Several studies have investigated whether IRGs and tumor immune microenvironment (TIME) could be indicators of CRC prognoses. This study aimed to develop an improved prognostic signature for CRC based on IRGs to predict overall survival (OS) and provide new therapeutic targets for CRC treatment. Based on the screened IRGs, the Cox regression model was used to build a prediction model based on 18-IRG signature. Cox regression analysis revealed that the 18-IRG signature was an independent prognostic factor for OS in CRC patients. Then, we used the TIMER online database to explore the relationship between the risk scoring model and the infiltration of immune cells, and the results showed that the risk model can reflect the state of TIME to a certain extent. In short, an 18-IRG prognostic signature for predicting CRC patients’ survival was firmly established.


2021 ◽  
Author(s):  
Chenxia Jiang ◽  
Xinyu Zhang ◽  
Xiaoyan Li ◽  
Jia Li ◽  
Hua Huang

Abstract Background: Relevant study had demonstrated that Paraoxonase-1 (PON1) had relationship with occurrence and development of tumors which suggested that PON1 was a key gene in promoting tumor progression. However, the relationship between PON1 and Kidney renal clear cell carcinoma (KIRC) is still unclear so far. Methods: We downloaded relevant data about KIRC from TCGA dataset and compared it with normal renal tissues. Immunohistochemistry (IHC) was applied to analyze the expression of PON1. Univariate cox regression analysis and multivariate cox regression analysis were also utilized to analyze independent factors associated with prognosis. Gene set enrichment analysis was conducted to find the signaling pathways of PON1 in KIRC. Finally, we also investigated whether PON1 had relationship with immunity. Results: As shown in results, PON1 expression was decreased in KIRC compared with adjacent paracancer tissues. Immunohistochemistry (IHC) was utilized to find the expression of PON1. After survival analysis, the high expression of PON1 was significantly related to overall survival (P<0.001). Univariate/Multivariate cox regression analysis both revealed that PON1 could serve as an independent prognostic factor. To analyze overall survival (OS) of patients with KIRC, nomogram was developed. GSEA revealed that PON1 was correlated with homologous recombination. Besides, PON1 had few relationships with immunity. Conclusions: Our results revealed that PON1 could serve as an independent prognostic factor for KIRC, providing a novel target for KIRC future treatments.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gaoteng Lin ◽  
Huadong Wang ◽  
Yuqi Wu ◽  
Keruo Wang ◽  
Gang Li

Background: N6-methyladenosine (m6A)–modified long noncoding RNAs (m6A-lncRNAs) have been proven to be involving in regulating tumorigenesis, invasion, and metastasis for a variety of tumors. The present study aimed to screen lncRNAs with m6A modification and investigate their biological signatures and prognostic values in kidney renal clear cell carcinoma (KIRC).Materials and Methods: lncRNA-seq, miRNA-seq, and mRNA-seq profiles of KIRC samples and the clinical characteristics of corresponding patients were downloaded from The Cancer Genome Atlas (TCGA). The R package “edgeR” was utilized to perform differentially expressed analysis on these profiles to gain DElncRNAs, DEmiRNAs, and DEmRNAs, respectively. The results of intersection of DElncRNAs and m6A-modified genes were analyzed by the weighted gene co-expression network analysis (WGCNA) to screen hub m6A-lncRNAs. Then, WGCNA was also used to construct an lncRNA-miRNA-mRNA (ceRNA) network. The Cox regression analysis was conducted on hub m6A-lncRNAs to construct the m6A-lncRNAs prognostic index (m6AlRsPI). Receiver operating characteristic (ROC) curve was used to assess the predictive ability of m6AlRsPI. The m6AlRsPI model was tested by internal and external cohorts. The molecular signatures and prognosis for hub m6A-lncRNAs and m6AlRsPI were analyzed. The expression level of hub m6A-lncRNAs in KIRC cell lines were quantified by qRT-PCR.Results: A total of 21 hub m6A-lncRNAs associated with tumor metastasis were identified in the light of WGCNA. The ceRNA network for 21 hub m6A-lncRNAs was developed. The Cox regression analysis was performed on the 21 hub m6A-lncRNAs, screening two m6A-lncRNAs regarded as independent prognostic risk factors. The m6AlRsPI was established based on the two m6A-lncRNAs as follows: (0.0006066 × expression level of LINC01820) + (0.0020769 × expression level of LINC02257). The cutoff of m6AlRsPI was 0.96. KM survival analysis for m6AlRsPI showed that the high m6AlRsPI group could contribute to higher mortality. The area under ROC curve for m6AlRsPI for predicting 3- and 5-year survival was 0.760 and 0.677, respectively, and the m6AlRsPI was also tested. The mutation and epithelial–mesenchymal transition (EMT) analysis for m6AlRsPI showed that the high m6AIRsPI group had more samples with gene mutation and had more likely caused EMT. Finally, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for mRNAs interacted with the two m6A-lncRNAs, showing they were involved in the process of RNA splicing and regulation of the mRNA surveillance pathway. qRT-PCR analysis showed that the two m6A-lncRNAs were upregulated in KIRC.Conclusion: In the present study, hub m6A-lncRNAs were determined associated with metastasis in KIRC, and the ceRNA network demonstrated the potential carcinogenic regulatory pathway. Two m6A-lncRNAs associated with the overall survival were screened and m6AlRsPI was constructed and validated. Finally, the molecular signatures for m6AlRsPI and the two m6A-lncRNAs were analyzed to investigate the potential modulated processes in KIRC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiangyu Che ◽  
Wenyan Su ◽  
Xiaowei Li ◽  
Nana Liu ◽  
Qifei Wang ◽  
...  

Angiogenesis, a process highly regulated by pro-angiogenic and anti-angiogenic factors, is disrupted and dysregulated in cancer. Despite the increased clinical use of angiogenesis inhibitors in cancer therapy, most molecularly targeted drugs have been less effective than expected. Therefore, an in-depth exploration of the angiogenesis pathway is warranted. In this study, the expression of angiogenesis-related genes in various cancers was explored using The Cancer Genome Atlas datasets, whereupon it was found that most of them were protective genes in the patients with kidney renal clear cell carcinoma (KIRC). We divided the samples from the KIRC dataset into three clusters according to the mRNA expression levels of these genes, with the enrichment scores being in the order of Cluster 2 (upregulated expression) &gt; Cluster 3 (normal expression) &gt; Cluster 1 (downregulated expression). The survival curves plotted for the three clusters revealed that the patients in Cluster 2 had the highest overall survival rates. Via a sensitivity analysis of the drugs listed on the Genomics of Drug Sensitivity in Cancer database, we generated IC50 estimates for 12 commonly used molecularly targeted drugs for KIRC in the three clusters, which can provide a more personalized treatment plan for the patients according to angiogenesis-related gene expression. Subsequently, we investigated the correlation between the angiogenesis pathway and classical cancer-related genes as well as that between the angiogenesis score and immune cell infiltration. Finally, we used the least absolute shrinkage and selection operator (LASSO)–Cox regression analysis to construct a risk score model for predicting the survival of patients with KIRC. According to the areas under the receiver operating characteristic (ROC) curves, this new survival model based on the angiogenesis-related genes had high prognostic prediction value. Our results should provide new avenues for the clinical diagnosis and treatment of patients with KIRC.


2017 ◽  
Vol 24 (3) ◽  
pp. 429-433 ◽  
Author(s):  
Hikmat Abdel-Razeq ◽  
Asem Mansour ◽  
Salwa S. Saadeh ◽  
Mahmoud Abu-Nasser ◽  
Mohammad Makoseh ◽  
...  

Venous thromboembolism (VTE) is a commonly encountered problem in patients with cancer. In recent years, cancer treatment paradigm has shifted with most therapy offered in ambulatory outpatient settings. Excess of half VTEs in patients with cancer occur in outpatient settings without prior hospitalization, where current practice guidelines do not recommend routine prophylaxis. Risk assessment models (RAMs) for VTE in such patients were recently introduced. This study aims to assess the practical application of one of these models in clinical practice. Medical records and hospital electronic database were searched for patients with cancer having VTE. Known risk factors were collected, and risk assessment was done using the Khorana RAM. Over a 10-year period, 346 patients developed VTE in ambulatory settings. Median age was 57 and 59.0% were females. Lower extremities were involved in 196 (56.6%), while 96 (27.7%) had pulmonary embolism. Most (76.6%) patients had stage IV disease, only 9.0% had stage I or II disease. Only 156 (45.1%) patients were on active chemotherapy, for whom Khorana risk assessment score was calculated. In these patients, high risk was identified in 31 (19.9%) patients, while 81 (51.9%) had intermediate risk and 44 (28.2%) had low risk. No patients were on prophylaxis prior to VTE. Most ambulatory patients with cancer who developed VTE were not on chemotherapy, and many of those who were on active treatment had low Khorana risk scores. This illustrates the need to modify the model or develop a new one that takes into consideration this group of patients.


Sign in / Sign up

Export Citation Format

Share Document