scholarly journals Integrative Analyses of Biochemical Properties and Transcriptome Reveal the Dynamic Changes in Leaf Senescence of Tobacco (Nicotiana tabacum L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Binghui Zhang ◽  
Jiahan Yang ◽  
Gang Gu ◽  
Liao Jin ◽  
Chengliang Chen ◽  
...  

Leaf senescence is an important process of growth and development in plant, and it is a programmed decline controlled by a series of genes. In this study, the biochemical properties and transcriptome at five maturity stages (M1∼M5) of tobacco leaves were analyzed to reveal the dynamic changes in leaf senescence of tobacco. A total of 722, 1,534, 3,723, and 6,933 genes were differentially expressed (DEG) between M1 and M2, M1 and M3, M1 and M4, and M1 and M5, respectively. Significant changes of nitrogen, sugars, and the DEGs related to metabolite accumulation were identified, suggesting the importance of energy metabolism during leaf senescence. Gene Ontology (GO) analysis found that DEGs were enriched in biosynthetic, metabolic, photosynthesis, and redox processes, and especially, the nitrogen metabolic pathways were closely related to the whole leaf senescence process (M1∼M5). All the DEGs were grouped into 12 expression profiles according to their distinct expression patterns based on Short Time-series Expression Miner (STEM) software analysis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that these DEGs were enriched in pathways of carbon metabolism, starch and sucrose metabolism, nitrogen metabolism, and photosynthesis among these expression profiles. A total of 30 core genes were examined by Weight Gene Co-expression Network Analysis (WGCNA), and they appeared to play a crucial role in the regulatory of tobacco senescence. Our results provided valuable information for further functional investigation of leaf senescence in plants.

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Linlin Sai ◽  
Xuejie Qi ◽  
Gongchang Yu ◽  
Juan Zhang ◽  
Yuxin Zheng ◽  
...  

Abstract Background Exposure to respirable crystalline silica (RCS) can induce accelerated silicosis (AS), a form of silicosis that is more progressive and severe form of silicosis. In this project we aimed to assess processes of silicosis in rats exposed to RCS with focus on the regulation of long noncoding RNAs (lncRNAs). Results The results showed that RCS induced acute inflammatory response as indicated by the appearance of inflammatory cells in the lung from the first day and peaked on day 7 of exposure. The fibroblasts appeared along with the inflammatory cells decreasing gradually on day 14. Extensive fibrosis appeared in the lung tissue, and silicon nodules were getting larger on day 28. Interestingly, the number of altered lncRNAs increased with the exposure time with 193, 424, 455, 421 and 682 lncRNAs on day 1, 7, 14, 21, and 28 after exposure, respectively. We obtained 285 lncRNAs with five significant temporal expression patterns whose expressions might correlate with severity of silicosis. KEGG analysis showed that lncRNAs from short time-series expression miner (STEM)-derived data mainly involved in 17 pathways such as complement and coagulation cascades. Conclusions The differential expression profiles of lncRNAs may be potential biomarkers in silicosis through modulating expressions of their relevant genes in lungs of rat and thus warrant further investigation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ming-Ming Zhao ◽  
Xiao-Wen Zhang ◽  
Yong-Wei Liu ◽  
Ke Li ◽  
Qi Tan ◽  
...  

Abstract Background Leaf senescence comprises numerous cooperative events, integrates environmental signals with age-dependent developmental cues, and coordinates the multifaceted deterioration and source-to-sink allocation of nutrients. In crops, leaf senescence has long been regarded as an essential developmental stage for productivity and quality, whereas functional characterization of candidate genes involved in the regulation of leaf senescence has, thus far, been limited in wheat. Results In this study, we analyzed the expression profiles of 97 WRKY transcription factors (TFs) throughout the progression of leaf senescence in wheat and subsequently isolated a potential regulator of leaf senescence, TaWRKY42-B, for further functional investigation. By phenotypic and physiological analyses in TaWRKY42-B-overexpressing Arabidopsis plants and TaWRKY42-B-silenced wheat plants, we confirmed the positive role of TaWRKY42-B in the initiation of developmental and dark-induced leaf senescence. Furthermore, our results revealed that TaWRKY42-B promotes leaf senescence mainly by interacting with a JA biosynthesis gene, AtLOX3, and its ortholog, TaLOX3, which consequently contributes to the accumulation of JA content. In the present study, we also demonstrated that TaWRKY42-B was functionally conserved with AtWRKY53 in the initiation of age-dependent leaf senescence. Conclusion Our results revealed a novel positive regulator of leaf senescence, TaWRKY42-B, which mediates JA-related leaf senescence via activation of JA biosynthesis and has the potential to be a target gene for molecular breeding in wheat.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 942
Author(s):  
Yongliang Fan ◽  
Ziyin Han ◽  
Xubin Lu ◽  
Abdelaziz Adam Idriss Arbab ◽  
Mudasir Nazar ◽  
...  

The existing research on dairy cow mammary gland genes is extensive, but there have been few reports about dynamic changes in dairy cow mammary gland genes as milk yield decrease. For the first time, transcriptome analysis based on short time-series expression miner (STEM) and histological observations were performed using the Holstein dairy cow mammary gland to explore gene expression patterns in this process of decrease (at peak, mid-, and late lactation). Histological observations suggested that the number of mammary acinous cells at peak/mid-lactation was significantly higher than that at mid-/late lactation, and the lipid droplets area secreted by dairy cows was almost unaltered across the three stages of lactation (p > 0.05). Totals of 882 and 1439 genes were differentially expressed at mid- and late lactation, respectively, compared to peak lactation. Function analysis showed that differentially expressed genes (DEGs) were mainly related to apoptosis and energy metabolism (fold change ≥ 2 or fold change ≤ 0.5, p-value ≤ 0.05). Transcriptome analysis based on STEM identified 16 profiles of differential gene expression patterns, including 5 significant profiles (false discovery rate, FDR ≤ 0.05). Function analysis revealed DEGs involved in milk fat synthesis were downregulated in Profile 0 and DEGs in Profile 12 associated with protein synthesis. These findings provide a foundation for future studies on the molecular mechanisms underlying mammary gland development in dairy cows.


2021 ◽  
Author(s):  
Zhiming Chen ◽  
Yongsheng Wang ◽  
Rongyu Huang ◽  
Zesen Zhang ◽  
Jinpeng Huang ◽  
...  

Abstract Background: The normal metabolism of transitory starch in leaves plays an important role in ensuring photosynthesis, delaying senescence and maintaining high yield in crops. OsCKI1 (casein kinase I1) plays crucial regulatory roles in multiple important physiological processes, including root development, hormonal signaling and low temperature-treatment adaptive growth in rice; however, its potential role in regulating temporary starch metabolism or premature leaf senescence remains unclear. To reveal the molecular regulatory mechanism of OsCKI1 in rice leaves, physiological, transcriptomic and proteomic analyses of leaves of the mutant lses1 (leaf starch excess and senescence 1), allelic to osckI1, and its wild-type variety (WT) were performed. Results: Phenotypic identification and physiological measurements showed that the lses1 mutant exhibited starch excess in the leaves and an obvious leaf tip withering phenotype as well as high ROS and MDA contents, low chlorophyll content and protective enzyme activities compared to WT. Transcriptomic and proteomic analyses showed that the correlations of most genes at the transcription and translation levels were limited. However, the changes of several important genes related to carbohydrate metabolism and apoptosis at the mRNA and protein levels were consistent. The protein-protein interaction (PPI) network might play accessory roles in promoting premature senescence of lses1 leaves. Comprehensive transcriptomic and proteomic analysis indicated that multiple key genes/proteins related to starch and sugar metabolism, apoptosis and ABA signaling exhibited significant differential expression. Abnormal increase in temporary starch was highly correlated with the expression of starch biosynthesis-related genes, which might be the main factor that causes premature leaf senescence and changes in multiple metabolic levels in leaves of lses1. In addition, significant up regulation of four proteins associated with ABA accumulation and signaling were detected in the lses1 mutant, suggesting that ABA may involve in multiple metabolic regulation via LSES1/OsCKI1 and the formation of mutant phenotype in lses1 leaves.Conclusion: The current study established the high correlation between the changes in physiological characteristics and mRNA and protein expression profiles in lses1 leaves, and emphasized the positive effect of excessive starch on accelerating premature leaf senescence. The expression patterns of genes/proteins related to starch biosynthesis and ABA signaling were analyzed via transcriptomes and proteomes, which provided a novel direction and research basis for the subsequent exploration of the regulation mechanism of temporary starch and apoptosis via LSES1/OsCKI1 in rice.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jie Liu ◽  
Fuwei Li ◽  
Xin Hu ◽  
Dingguo Cao ◽  
Wei Liu ◽  
...  

Abstract Background miRNAs play critical roles in growth and development. Various studies of chicken muscle development have focused on identifying miRNAs that are important for embryo or adult muscle development. However, little is known about the role of miRNAs in the whole muscle development process from embryonic to post-hatching periods. Here, we present a comprehensive investigation of miRNA transcriptomes at 12-day embryo (E12), E17, and day 1 (D1), D14, D56 and D98 post-hatching stages. Results We identified 337 differentially expressed miRNAs (DE-miRNAs) during muscle development. A Short Time-Series Expression Miner analysis identified two significantly different expression profiles. Profile 4 with downregulated pattern contained 106 DE-miRNAs, while profile 21 with upregulated pattern contained 44 DE-miRNAs. The DE-miRNAs with the upregulated pattern mainly played regulatory roles in cellular turnover, such as pyrimidine metabolism, DNA replication, and cell cycle, whereas DE-miRNAs with the downregulated pattern directly or indirectly contributed to protein turnover metabolism such as glycolysis/gluconeogenesis, pyruvate metabolism and biosynthesis of amino acids. Conclusions The main functional miRNAs during chicken muscle development differ between embryonic and post-hatching stages. miRNAs with an upregulated pattern were mainly involved in cellular turnover, while miRNAs with a downregulated pattern mainly played a regulatory role in protein turnover metabolism. These findings enrich information about the regulatory mechanisms involved in muscle development at the miRNA expression level, and provide several candidates for future studies concerning miRNA-target function in regulation of chicken muscle development.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 997
Author(s):  
Jia-Ying Zhu ◽  
Lu Li ◽  
Kai-Ran Xiao ◽  
Shu-Qi He ◽  
Fu-Rong Gui

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects’ protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.


MicroRNA ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Nato Teteloshvili ◽  
Katarzyna Smigielska-Czepiel ◽  
Bart-Jan Kroesen ◽  
Elisabeth Brouwer ◽  
Joost Kluiver ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqian Zhang ◽  
Chang Li ◽  
Bingzhou Zhang ◽  
Zhonghua Li ◽  
Wei Zeng ◽  
...  

AbstractThe variant virulent porcine epidemic diarrhea virus (PEDV) strain (YN15) can cause severe porcine epidemic diarrhea (PED); however, the attenuated vaccine-like PEDV strain (YN144) can induce immunity in piglets. To investigate the differences in pathogenesis and epigenetic mechanisms between the two strains, differential expression and correlation analyses of the microRNA (miRNA) and mRNA in swine testicular (ST) cells infected with YN15, YN144, and mock were performed on three comparison groups (YN15 vs Control, YN144 vs Control, and YN15 vs YN144). The mRNA and miRNA expression profiles were obtained using next-generation sequencing (NGS), and the differentially expressed (DE) (p-value < 0.05) mRNA and miRNA were obtained using DESeq R package. mRNAs targeted by DE miRNAs were predicted using the miRanda algortithm. 8039, 8631 and 3310 DE mRNAs, and 36, 36, and 22 DE miRNAs were identified in the three comparison groups, respectively. 14,140, 15,367 and 3771 DE miRNA–mRNA (targeted by DE miRNAs) interaction pairs with negatively correlated expression patterns were identified, and interaction networks were constructed using Cytoscape. Six DE miRNAs and six DE mRNAs were randomly selected to verify the sequencing data by real-time relative quantitative reverse transcription polymerase chain reaction (qRT-PCR). Based on bioinformatics analysis, we discovered the differences were mostly involved in host immune responses and viral pathogenicity, including NF-κB signaling pathway and bacterial invasion of epithelial cells, etc. This is the first comprehensive comparison of DE miRNA–mRNA pairs in YN15 and YN144 infection in vitro, which could provide novel strategies for the prevention and control of PED.


Sign in / Sign up

Export Citation Format

Share Document