scholarly journals Genome-Wide Diversity of MADS-Box Genes in Bread Wheat is Associated with its Rapid Global Adaptability

2022 ◽  
Vol 12 ◽  
Author(s):  
Qasim Raza ◽  
Awais Riaz ◽  
Rana Muhammad Atif ◽  
Babar Hussain ◽  
Iqrar Ahmad Rana ◽  
...  

MADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. Here, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more rapid evolution was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that could accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits.

2020 ◽  
Author(s):  
Qasim Raza ◽  
Awais Riaz ◽  
Rana Muhammad Atif ◽  
Babar Hussain ◽  
Zulfiqar Ali ◽  
...  

AbstractMADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. However, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the latest publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies, without a single FLOWERING LOCUS C homolog present in the wheat genome. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more recent evolutionary origin was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that will accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits.


2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8019 ◽  
Author(s):  
Yanshu Qu ◽  
Changwei Bi ◽  
Bing He ◽  
Ning Ye ◽  
Tongming Yin ◽  
...  

MADS-box genes encode transcription factors that participate in various plant growth and development processes, particularly floral organogenesis. To date, MADS-box genes have been reported in many species, the completion of the sequence of the willow genome provides us with the opportunity to conduct a comprehensive analysis of the willow MADS-box gene family. Here, we identified 60 willow MADS-box genes using bioinformatics-based methods and classified them into 22 M-type (11 Mα, seven Mβ and four Mγ) and 38 MIKC-type (32 MIKCc and six MIKC*) genes based on a phylogenetic analysis. Fifty-six of the 60 SsMADS genes were randomly distributed on 19 putative willow chromosomes. By combining gene structure analysis with evolutionary analysis, we found that the MIKC-type genes were more conserved and played a more important role in willow growth. Further study showed that the MIKC* type was a transition between the M-type and MIKC-type. Additionally, the number of MADS-box genes in gymnosperms was notably lower than that in angiosperms. Finally, the expression profiles of these willow MADS-box genes were analysed in five different tissues (root, stem, leave, bud and bark) and validated by RT-qPCR experiments. This study is the first genome-wide analysis of the willow MADS-box gene family, and the results establish a basis for further functional studies of willow MADS-box genes and serve as a reference for related studies of other woody plants.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1805
Author(s):  
Tareq Alhindi ◽  
Ayed M. Al-Abdallat

The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mβ-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5–15) greatly exceeded the number in type I genes (1–9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family.


Genome ◽  
2012 ◽  
Vol 55 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Lifang Hu ◽  
Shiqiang Liu

MADS-box transcription factors are known to be involved in many important processes during plant growth and development. To date, few cucumber MADS-box genes and little tissue expression profiling have been reported. Recent completion of the cucumber whole-genome sequencing has allowed genome-wide analysis of the MADS-box gene family in cucumber as well as its comparison with other species. Here, we performed comprehensive analyses of the 43 cucumber MADS-box genes and compared them with those in Arabidopsis, poplar, and grapevine. The phylogenetic analysis showed that most cucumber members were comparable with those in other species, with the exception of AG members. At the same time, the three subfamilies FLC, AGL12, and Bs were absent in the cucumber genome. The conserved motif analysis revealed that most motifs outside the MADS domain were distributed only in specific groups. The analysis of chromosomal localization suggested that tandem duplication might contribute to the MADS-box gene expansion. Expression analysis revealed that 42 of 43 cucumber MADS-box members were expressed in multiple plant tissues, thereby implying their various roles in plants.


2021 ◽  
Vol 22 (18) ◽  
pp. 10128
Author(s):  
Yinquan Qu ◽  
Weilong Kong ◽  
Qian Wang ◽  
Xiangxiang Fu

MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters’ regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 345-356 ◽  
Author(s):  
M D Purugganan ◽  
S D Rounsley ◽  
R J Schmidt ◽  
M F Yanofsky

Abstract Floral homeotic genes that control the specification of meristem and organ identity in developing flowers have been isolated from both Arabidopsis thaliana and Antirrhinum majus. Most of these genes belong to a large family of regulatory genes and possess a characteristic DNA binding domain known as the MADS-box. Members of this gene family display primarily floral-specific expression and are homologous to transcription factors found in several animal and fungal species. Molecular evolutionary analyses reveal that there are appreciable differences in the substitution rates between different domains of these plant MADS-box genes. Phylogenetic analyses also demonstrate that members of the plant MADS-box gene family are organized into several distinct gene groups: the AGAMOUS, APETALA3/PISTILLATA and APETALA1/AGL9 groups. The shared evolutionary history of members of a gene group appear to reflect the distinct functional roles these MADS-box genes play in flower development. Molecular evolutionary analyses also suggest that these different gene groups were established in a relatively short span of evolutionary time and that the various floral homeotic loci originated even before the appearance of the flowering plants.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181443 ◽  
Author(s):  
Jian Ma ◽  
Yujie Yang ◽  
Wei Luo ◽  
Congcong Yang ◽  
Puyang Ding ◽  
...  

2018 ◽  
Author(s):  
Yanshu Qu ◽  
Changwei Bi ◽  
Bing He ◽  
Ning Ye ◽  
Tongming Yin ◽  
...  

MADS-box genes encode transcription factors that participate in various plant growth and development processes, particularly floral organogenesis. To date, MADS-box genes have been reported in many species, the completion of the sequence of the willow genome provides us with the opportunity to conduct a comprehensive analysis of the willow MADS-box gene family. Here, we identified 60 willow MADS-box genes using bioinformatics-based methods and classified them into 22 M-type (11 Mα, 7 Mβ and 4 Mγ) and 38 MIKC-type (32 MIKCc and 6 MIKC*) genes based on a phylogenetic analysis. Fifty-six of the 60 SsMADS genes were randomly distributed on 19 putative willow chromosomes. By combining gene structure analysis with evolutionary analysis, we found that the MIKC-type genes were more conserved and played a more important role in willow growth. Further study showed that the MIKC* type was a transition between the M-type and MIKC-type. Additionally, the number of MADS-box genes in gymnosperms was notably lower than that in angiosperms. Finally, the expression profiles of these willow MADS-box genes were analysed in five different tissues (root, stem, leave, bud and bark). This study is the first genome-wide analysis of the willow MADS-box gene family, and the results establish a basis for further functional studies of willow MADS-box genes and serve as a reference for related studies of other woody plants.


2019 ◽  
Author(s):  
Susanne Schilling ◽  
Alice Kennedy ◽  
Sirui Pan ◽  
Lars S. Jermiin ◽  
Rainer Melzer

AbstractBackgroundWheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging climate and cultivation conditions, facilitating wheat breeding by fine-tuning important traits such as stress resistance, yield and plant architecture is of great importance. Since they are involved in virtually all aspects of plant development and stress responses, prime candidates for improving these traits are MIKC-type (type II) MADS-box genes.ResultsWe present a detailed overview of number, phylogeny, and expression of 201 wheat MIKC-type MADS-box genes, which can be assigned to 15 subfamilies. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution.We find the extensive expansion of some MIKC-type subfamilies to be correlated with their chromosomal location and propose a link between MADS-box gene duplications and the adaptability of wheat. A number of MIKC-type genes encode for truncated proteins that lack either the DNA-binding or protein-protein interaction domain and occasionally show novel expression patterns, possibly pointing towards neofunctionalization.ConclusionsConserved and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to its importance as a global staple food. Therefore, we propose that MIKC-type MADS-box genes are especially well suited for targeted breeding approaches and phenotypic fine tuning.


Sign in / Sign up

Export Citation Format

Share Document