scholarly journals Tetraspanins as Potential Therapeutic Candidates for Targeting Flaviviruses

2021 ◽  
Vol 12 ◽  
Author(s):  
Waqas Ahmed ◽  
Girish Neelakanta ◽  
Hameeda Sultana

Tetraspanin family of proteins participates in numerous fundamental signaling pathways involved in viral transmission, virus-specific immunity, and virus-mediated vesicular trafficking. Studies in the identification of novel therapeutic candidates and strategies to target West Nile virus, dengue and Zika viruses are highly warranted due to the failure in development of vaccines. Recent evidences have shown that the widely distributed tetraspanin proteins may provide a platform for the development of novel therapeutic approaches. In this review, we discuss the diversified and important functions of tetraspanins in exosome/extracellular vesicle biology, virus-host interactions, virus-mediated vesicular trafficking, modulation of immune mechanism(s), and their possible role(s) in host antiviral defense mechanism(s) through interactions with noncoding RNAs. We also highlight the role of tetraspanins in the development of novel therapeutics to target arthropod-borne flaviviral diseases.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 766
Author(s):  
David F. Woods ◽  
Stephanie Flynn ◽  
Jose A. Caparrós-Martín ◽  
Stephen M. Stick ◽  
F. Jerry Reen ◽  
...  

The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.


2016 ◽  
Vol 118 (12) ◽  
pp. 1960-1991 ◽  
Author(s):  
Elizabeth Murphy ◽  
Hossein Ardehali ◽  
Robert S. Balaban ◽  
Fabio DiLisa ◽  
Gerald W. Dorn ◽  
...  

Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 694 ◽  
Author(s):  
Sara Silvia Violanti ◽  
Ilaria Bononi ◽  
Carla Enrica Gallenga ◽  
Fernanda Martini ◽  
Mauro Tognon ◽  
...  

Uveal melanoma (UM), which is the most common cancer of the eye, was investigated in recent years by many teams in the field of biomedical sciences and eye clinicians. New knowledge was acquired on molecular pathways found to be dysregulated during the multistep process of oncogenesis, whereas novel therapeutic approaches gave significant results in the clinical applications. Uveal melanoma-affected patients greatly benefited from recent advances of the research in this eye cancer. Tumour biology, genetics, epigenetics and immunology contributed significantly in elucidating the role of different genes and related pathways during uveal melanoma onset/progression and UM treatments. Indeed, these investigations allowed identification of new target genes and to develop new therapeutic strategies/compounds to cure this aggressive melanoma of the eye. Unfortunately, the advances reported in the treatment of cutaneous melanoma have not produced analogous benefits in metastatic uveal melanoma. Nowadays, no systemic adjuvant therapy has been shown to improve overall survival or reduce the risk of metastasis. However, the increasing knowledge of this disease, and the encouraging results seen in clinical trials, offer promise for future effective therapies. Herein, different pathways/genes involved in uveal melanoma onset/progression were taken into consideration, together with novel therapeutic approaches.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1295-1302 ◽  
Author(s):  
Roland B. Walter ◽  
Brian W. Raden ◽  
Darren M. Kamikura ◽  
Jonathan A. Cooper ◽  
Irwin D. Bernstein

AbstractGemtuzumab ozogamicin (GO; Mylotarg), a novel immunoconjugate used for treatment of acute myeloid leukemia (AML), contains the humanized anti-CD33 antibody (hP67.6) as a carrier to facilitate cellular uptake of the toxic calicheamicin-γ1 derivative. By use of lentivirus-mediated gene transfer to manipulate CD33 expression in myeloid cell lines that normally lack CD33 (murine 32D cells) or have very low levels of CD33 (human OCI-AML3 and KG-1a cells), we here show a quantitative relationship between CD33 expression and GO-induced cytotoxicity. The CD33 cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) control internalization of antibody bound to CD33. Disruption of the ITIMs by introduction of point mutations not only prevented effective internalization of antibody-bound CD33 but also significantly reduced GO-induced cytotoxicity. Together, our data imply a pivotal role of both the number of CD33 molecules expressed on the cell surface and the amount of internalization of CD33 following antibody binding for GO-induced cytotoxicity and suggest novel therapeutic approaches for improvement of clinical outcome of patients treated with GO.


2021 ◽  
Vol 22 (16) ◽  
pp. 9033
Author(s):  
Elisa Giacomini ◽  
Sabrina Minetto ◽  
Letizia Li Li Piani ◽  
Luca Pagliardini ◽  
Edgardo Somigliana ◽  
...  

According to a rich body of literature, immune cell dysfunctions, both locally and systemically, and an inflammatory environment characterize all forms of endometriosis. Alterations in transcripts and proteins involved in the recruitment of immune cells, in the interaction between cytokines and their receptors, cellular adhesion and apoptosis have been demonstrated in endometriotic lesions. The objective of this narrative review is to provide an overview of the components and mechanisms at the intersection between inflammation and genetics that may constitute vanguard therapeutic approaches in endometriosis. The GWAS technology and pathway-based analysis highlighted the role of the MAPK and the WNT/β-catenin cascades in the pathogenesis of endometriosis. These signaling pathways have been suggested to interfere with the disease establishment via several mechanisms, including apoptosis, migration and angiogenesis. Extracellular vesicle-associated molecules may be not only interesting to explain some aspects of endometriosis progression, but they may also serve as therapeutic regimens per se. Immune/inflammatory dysfunctions have always represented attractive therapeutic targets in endometriosis. These would be even more interesting if genetic evidence supported the involvement of functional pathways at the basis of these alterations. Targeting these dysfunctions through next-generation inhibitors can constitute a therapeutic alternative for endometriosis.


2020 ◽  
Vol 21 (18) ◽  
pp. 6863 ◽  
Author(s):  
Kuo-Shyang Jeng ◽  
I-Shyan Sheen ◽  
Chuen-Miin Leu ◽  
Ping-Hui Tseng ◽  
Chiung-Fang Chang

Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.


2021 ◽  
Vol 66 (1) ◽  
pp. 61-79
Author(s):  
Bryony C. Bonning ◽  
Maria-Carla Saleh

As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA–based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.


Sign in / Sign up

Export Citation Format

Share Document