scholarly journals Antibody Responses in COVID-19: A Review

2021 ◽  
Vol 12 ◽  
Author(s):  
Mateo Chvatal-Medina ◽  
Yorjagis Mendez-Cortina ◽  
Pablo J. Patiño ◽  
Paula A. Velilla ◽  
Maria T. Rugeles

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide as a severe pandemic. Although its seroprevalence is highly variable among territories, it has been reported at around 10%, but higher in health workers. Evidence regarding cross-neutralizing response between SARS-CoV and SARS-CoV-2 is still controversial. However, other previous coronaviruses may interfere with SARS-CoV-2 infection, since they are phylogenetically related and share the same target receptor. Further, the seroconversion of IgM and IgG occurs at around 12 days post onset of symptoms and most patients have neutralizing titers on days 14-20, with great titer variability. Neutralizing antibodies correlate positively with age, male sex, and severity of the disease. Moreover, the use of convalescent plasma has shown controversial results in terms of safety and efficacy, and due to the variable immune response among individuals, measuring antibody titers before transfusion is mostly required. Similarly, cellular immunity seems to be crucial in the resolution of the infection, as SARS-CoV-2-specific CD4+ and CD8+ T cells circulate to some extent in recovered patients. Of note, the duration of the antibody response has not been well established yet.

2021 ◽  
Author(s):  
Alena J. Markmann ◽  
Natasa Giallourou ◽  
D. Ryan Bhowmik ◽  
Yixuan J. Hou ◽  
Aaron Lerner ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2. Using convalescent sera collected from 101 COVID-19 recovered individuals 21-212 days after symptom onset with forty-eight additional longitudinal samples, we measured functionality and durability of serum antibodies. We also evaluated associations between individual demographic and clinical parameters with functional neutralizing antibody responses to COVID-19. We found robust antibody durability out to six months, as well as significant positive associations with the magnitude of the neutralizing antibody response and male sex. We also show that SARS-CoV-2 convalescent neutralizing antibodies are higher in individuals with cardio-metabolic comorbidities.SignificanceIn this study we found that neutralizing antibody responses in COVID-19 convalescent individuals vary in magnitude but are durable and correlate well with RBD Ig binding antibody levels compared to other SARS-CoV-2 antigen responses. In our cohort, higher neutralizing antibody titers are independently and significantly associated with male sex compared to female sex. We also show for the first time, that higher convalescent antibody titers in male donors are associated with increased age and symptom grade. Furthermore, cardio-metabolic co-morbidities are associated with higher antibody titers independently of sex. Here, we present an in-depth evaluation of serologic, demographic, and clinical correlates of functional antibody responses and durability to SARS-CoV-2.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1942
Author(s):  
Evangelos Terpos ◽  
Ioannis P. Trougakos ◽  
Vangelis Karalis ◽  
Ioannis Ntanasis-Stathopoulos ◽  
Sentiljana Gumeni ◽  
...  

The aim of this study was to investigate the kinetics of neutralizing antibodies (NAbs) and anti-SARS-CoV-2 anti-S-RBD IgGs up to three months after the second vaccination dose with the BNT162b2 mRNA vaccine. NAbs and anti-S-RBD levels were measured on days 1 (before the first vaccine shot), 8, 22 (before the second shot), 36, 50, and three months after the second vaccination (D111) (NCT04743388). 283 health workers were included in this study. NAbs showed a rapid increase from D8 to D36 at a constant rate of about 3% per day and reached a median (SD) of 97.2% (4.7) at D36. From D36 to D50, a slight decrease in NAbs values was detected and it became more prominent between D50 and D111 when the rate of decline was determined at −0.11 per day. The median (SD) NAbs value at D111 was 92.7% (11.8). A similar pattern was also observed for anti-S-RBD antibodies. Anti-S-RBDs showed a steeper increase during D22–D36 and a lower decline rate during D36–D111. Prior COVID-19 infection and younger age were associated with superior antibody responses over time. In conclusion, we found a persistent but declining anti-SARS-CoV-2 humoral immunity at 3 months following full vaccination with BNT162b2 in healthy individuals.


2021 ◽  
Author(s):  
Mary Gaeddert ◽  
Philip Kitchen ◽  
Tobias Broger ◽  
Stefan Weber ◽  
Ralf Bartenschlager ◽  
...  

AbstractBackgroundAfter infection with severe acute respiratory syndrome coronavirus (SARS-CoV-2), Immunoglobulin G (IgG) antibodies and virus-specific neutralizing antibodies (nAbs) develop. This study describes antibody responses in a cohort of recovered COVID-19 patients to identify predictors.MethodsWe recruited patients with confirmed SARS-CoV-2 infection from Heidelberg, Germany. Blood samples were collected three weeks after COVID-19 symptoms ended. Participants with high antibody titers were invited for follow-up visits. IgG titers were measured by the Euroimmun Assay, and nAbs titers in a SARS-CoV-2 infection-based assay.Results281 participants were enrolled between April and August 2020 with IgG testing, 145 (51.6%) had nAbs, and 35 (12.5%) had follow-up. The median IgG optical density (OD) ratio was 3.1 (Interquartile range (IQR) 1.6-5.1), and 24.1% (35/145) had a nAb titer>1:80. Higher IgG titers were associated with increased age and more severe disease, and higher nAbs were associated with male gender and CT-value of 25-30 on RT-PCR at diagnosis. The median IgG OD ratio on follow-up was 3.7 (IQR 2.9-5.9), a median increase of 0.5 (IQR −0.3-1.7). Six participants with follow-up nAbs all had titers ≤ 1:80.ConclusionsWhile age and disease severity were correlated with IgG responses, predictive factors for nAbs in convalescent patients remain unclear.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Maria Blasi ◽  
Donatella Negri ◽  
Kevin O. Saunders ◽  
Erich J. Baker ◽  
Hannah Stadtler ◽  
...  

AbstractA preventative HIV-1 vaccine is an essential intervention needed to halt the HIV-1 pandemic. Neutralizing antibodies protect against HIV-1 infection in animal models, and thus an approach toward a protective HIV-1 vaccine is to induce broadly cross-reactive neutralizing antibodies (bnAbs). One strategy to achieve this goal is to define envelope (Env) evolution that drives bnAb development in infection and to recreate those events by vaccination. In this study, we report the immunogenicity, safety, and efficacy in rhesus macaques of an SIV-based integrase defective lentiviral vector (IDLV) expressing sequential gp140 Env immunogens derived from the CH505 HIV-1-infected individual who made the CH103 and CH235 bnAb lineages. Immunization with IDLV expressing sequential CH505 Envs induced higher magnitude and more durable binding and neutralizing antibody responses compared to protein or DNA +/− protein immunizations using the same sequential envelopes. Compared to monkeys immunized with a vector expressing Envs alone, those immunized with the combination of IDLV expressing Env and CH505 Env protein demonstrated improved durability of antibody responses at six months after the last immunization as well as lower peak viremia and better virus control following autologous SHIV-CH505 challenge. There was no evidence of vector mobilization or recombination in the immunized and challenged monkeys. Although the tested vaccines failed to induce bnAbs and to mediate significant protection following SHIV-challenge, our results show that IDLV proved safe and successful at inducing higher titer and more durable immune responses compared to other vaccine platforms.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Fabiana Freire Mendes de Oliveira ◽  
Sireesha Mamillapalli ◽  
Srinivas Gonti ◽  
Robert N. Brey ◽  
Han Li ◽  
...  

ABSTRACT Protective antigen (PA) is a component of anthrax toxin that can elicit toxin-neutralizing antibody responses. PA is also the major antigen in the current vaccine to prevent anthrax, but stability problems with recombinant proteins have complicated the development of new vaccines containing recombinant PA. The relationship between antigen physical stability and immunogenicity is poorly understood, but there are theoretical reasons to think that this parameter can affect immune responses. We investigated the immunogenicity of anthrax PA, in the presence and absence of the soluble von Willebrand factor A domain of the human form of receptor capillary morphogenesis protein 2 (sCMG2), to elicit antibodies to PA in BALB/c mice. Prior studies showed that sCMG2 stabilizes the 83-kDa PA structure to pH, chemical denaturants, temperature, and proteolysis and slows the hydrogen-deuterium exchange rate of histidine residues far from the binding interface. In contrast to a vaccine containing PA without adjuvant, we found that mice immunized with PA in stable complex with sCMG2 showed markedly reduced antibody responses to PA, including toxin-neutralizing antibodies and antibodies to domain 4, which correlated with fewer toxin-neutralizing antibodies. In contrast, mice immunized with PA in concert with a nonbinding mutant of sCMG2 (D50A) showed anti-PA antibody responses similar to those observed with PA alone. Our results suggest that addition of sCMG2 to a PA vaccine formulation is likely to result in a significantly diminished immune response, but we discuss the multitude of factors that could contribute to reduced immunogenicity. IMPORTANCE The anthrax toxin PA is the major immunogen in the current anthrax vaccine (anthrax vaccine adsorbed). Improving the anthrax vaccine for avoidance of a cold chain necessitates improvements in the thermodynamic stability of PA. We address how stabilizing PA using sCMG2 affects PA immunogenicity in BALB/c mice. Although the stability of PA is increased by binding to sCMG2, PA immunogenicity is decreased. This study emphasizes that, while binding of a ligand retains or improves conformational stability without affecting the native sequence, epitope recognition or processing may be affected, abrogating an effective immune response.


1998 ◽  
Vol 31 (4) ◽  
pp. 367-371 ◽  
Author(s):  
Avelino Albas ◽  
Paulo Eduardo Pardo ◽  
Albério Antonio Barros Gomes ◽  
Fernanda Bernardi ◽  
Fumio Honma Ito

Humoral immune response using inactivated rabies vaccine was studied in 35 nelore cross-bred bovines of western region of São Paulo state. Ninety days after vaccination, 13 (92.8%) animals presented titers 30.5IU/ml, through mouse neutralization test. After 180 days, 9 (64.3%) sera showed titers 30.5IU/ml, after 270 days, only one (7.1%) showed a titer of 0.51IU/ml, and after 360 days, all animals showed titers < 0.5IU/ml. Group of animals receiving booster dose 30 days after vaccination presented, two months after, all with titers > 0.5IU/ml. At 180 days, 17 (80.9%) sera presented titers > 0.5IU/ml; at 270 days, 15 (71.4%), with titers 30.5IU/ml and at 360 days, 4 (19.0%), with titers 30.5IU/ml. Booster-dose ensured high levels of neutralizing antibodies for at least three months, and 240 days after revaccination, 71.4% of animals were found with titers 30.5IU/ml.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
F. Castiglione ◽  
F. Mantile ◽  
P. De Berardinis ◽  
A. Prisco

The immune system is able to respond more vigorously to the second contact with a given antigen than to the first contact. Vaccination protocols generally include at least two doses, in order to obtain high antibody titers. We want to analyze the relation between the time elapsed from the first dose (priming) and the second dose (boost) on the antibody titers. In this paper, we couplein vivoexperiments with computer simulations to assess the effect of delaying the second injection. We observe that an interval of several weeks between the prime and the boost is necessary to obtain optimal antibody responses.


2020 ◽  
Author(s):  
Blasi Maria ◽  
Negri Donatella ◽  
Saunders O Kevin ◽  
Baker J Erich ◽  
Stadtler Hannah ◽  
...  

AbstractA preventative HIV-1 vaccine is an essential intervention needed to halt the HIV-1 pandemic. Neutralizing antibodies protect against HIV-1 infection in animal models, and thus an approach toward a protective HIV-1 vaccine is to induce broadly cross-reactive neutralizing antibodies (bnAbs). One strategy to achieve this goal is to define envelope (Env) evolution that drives bnAb development in infection and to recreate those events by vaccination. In this study we report the immunogenicity, safety and efficacy in rhesus macaques of an SIV-based integrase defective lentiviral vector (IDLV) expressing sequential gp140 Env immunogens derived from the CH505 HIV-1-infected individual who made the CH103 and CH235 bnAb lineages. Immunization with IDLV expressing sequential CH505 Env induced higher magnitude and more durable binding and neutralizing antibody responses compared to protein or DNA +/- protein immunizations using the same sequential envelopes. Compared to monkeys immunized with vector expressing Envs alone, those immunized with the combination of IDLV expressing Env and CH505 Env protein demonstrated improved durability of antibody responses at six month after the last immunization as well as lower peak viremia and better virus control following autologous SHIV-CH505 challenge. There was no evidence of vector mobilization or recombination in the immunized and challenged monkeys. Our results show that while IDLV proved safe and successful at inducing higher titer and more durable immune responses compared to other vaccine platforms, the use of non-stabilized sequential envelope trimers did not induce broadly neutralizing antibody responses.


2021 ◽  
Author(s):  
Takahiro Kageyama ◽  
Shigeru Tanaka ◽  
Keishi Etori ◽  
Koto Hattori ◽  
Kazusa Miyachi ◽  
...  

We analyzed peripheral blood mononuclear cells (PBMCs) of each 20 individuals with a high anti-SARS-CoV-2 antibody titer and a low antibody titer out of 1,774 healthcare workers who received BNT162b2 mRNA vaccine. A higher antibody titer was associated with the frequencies of naive and transitional B cells before vaccination. In addition, fold changes in the frequency of activated CD8+ T cells upon vaccination were correlated with the antibody titers.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ioannis P. Trougakos ◽  
Evangelos Terpos ◽  
Christina Zirou ◽  
Aimilia D. Sklirou ◽  
Filia Apostolakou ◽  
...  

Abstract Background Coronavirus SARS-CoV-2, the causative agent of COVID-19, has caused a still evolving global pandemic. Given the worldwide vaccination campaign, the understanding of the vaccine-induced versus COVID-19-induced immunity will contribute to adjusting vaccine dosing strategies and speeding-up vaccination efforts. Methods Anti-spike-RBD IgGs and neutralizing antibodies (NAbs) titers were measured in BNT162b2 mRNA vaccinated participants (n = 250); we also investigated humoral and cellular immune responses in vaccinated individuals (n = 21) of this cohort 5 months post-vaccination and assayed NAbs levels in COVID-19 hospitalized patients (n = 60) with moderate or severe disease, as well as in COVID-19 recovered patients (n = 34). Results We found that one (boosting) dose of the BNT162b2 vaccine triggers robust immune (i.e., anti-spike-RBD IgGs and NAbs) responses in COVID-19 convalescent healthy recipients, while naïve recipients require both priming and boosting shots to acquire high antibody titers. Severe COVID-19 triggers an earlier and more intense (versus moderate disease) immune response in hospitalized patients; in all cases, however, antibody titers remain at high levels in COVID-19 recovered patients. Although virus infection promotes an earlier and more intense, versus priming vaccination, immune response, boosting vaccination induces antibody titers significantly higher and likely more durable versus COVID-19. In support, high anti-spike-RBD IgGs/NAbs titers along with spike (vaccine encoded antigen) specific T cell clones were found in the serum and peripheral blood mononuclear cells, respectively, of vaccinated individuals 5 months post-vaccination. Conclusions These findings support vaccination efficacy, also suggesting that vaccination likely offers more protection than natural infection. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document