scholarly journals Raising the ‘Good’ Oxidants for Immune Protection

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexia Dumas ◽  
Ulla G. Knaus

Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.

2002 ◽  
Vol 7 (3) ◽  
pp. 215-222 ◽  
Author(s):  
Wei Huang ◽  
Yan Zhang ◽  
J. Richard Sportsman

Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of the 3′-ester bond of cyclic AMP (cAMP) and cyclic GMP (cGMP), important second messengers in the transduction of a variety of extracellular signals. There is growing interest in the study of PDEs as drug targets for novel therapeutics. We describe the development of a homogeneous fluorescence polarization assay for PDEs based on the strong binding of PDE reaction products (i.e., AMP or GMP) onto modified nanoparticles through interactions with immobilized trivalent metal cations. This assay technology (IMAP) is applicable to both cAMP- and cGMP-specific PDEs. Results of the assay in 384- and 1536-well microplates are presented.


Author(s):  
Jamie E Meegan ◽  
Julie A. Bastarache ◽  
Lorraine B. Ware

Levels of circulating cell-free hemoglobin are elevated during hemolytic and inflammatory diseases and contribute to organ dysfunction and severity of illness. Though several studies have investigated the contribution of hemoglobin to tissue injury, the precise signaling mechanisms of hemoglobin-mediated endothelial dysfunction in the lung and other organs are not yet completely understood. The purpose of this review is to highlight the knowledge gained thus far and the need for further investigation regarding hemoglobin-mediated endothelial inflammation and injury in order to develop novel therapeutic strategies targeting the damaging effects of cell-free hemoglobin.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Jamal Uddin ◽  
Chun-shi Li ◽  
Yeonsoo Joe ◽  
Yingqing Chen ◽  
Qinggao Zhang ◽  
...  

Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammationin vitroandin vivo.


1998 ◽  
Vol 78 (1) ◽  
pp. 53-97 ◽  
Author(s):  
FRANK M. FARACI ◽  
DONALD D. HEISTAD

Faraci, Frank M., and Donald D. Heistad. Regulation of the Cerebral Circulation: Role of Endothelium and Potassium Channels. Physiol. Rev. 78: 53–97, 1998. — Several new concepts have emerged in relation to mechanisms that contribute to regulation of the cerebral circulation. This review focuses on some physiological mechanisms of cerebral vasodilatation and alteration of these mechanisms by disease states. One mechanism involves release of vasoactive factors by the endothelium that affect underlying vascular muscle. These factors include endothelium-derived relaxing factor (nitric oxide), prostacyclin, and endothelium-derived hyperpolarizing factor(s). The normal vasodilator influence of endothelium is impaired by some disease states. Under pathophysiological conditions, endothelium may produce potent contracting factors such as endothelin. Another major mechanism of regulation of cerebral vascular tone relates to potassium channels. Activation of potassium channels appears to mediate relaxation of cerebral vessels to diverse stimuli including receptor-mediated agonists, intracellular second messengers, and hypoxia. Endothelial- and potassium channel-based mechanisms are related because several endothelium-derived factors produce relaxation by activation of potassium channels. The influence of potassium channels may be altered by disease states including chronic hypertension, subarachnoid hemorrhage, and diabetes.


1997 ◽  
Vol 78 (4) ◽  
pp. 2231-2234 ◽  
Author(s):  
Guo Jun Liu ◽  
Barry W. Madsen

Liu, Guo Jun and Barry W. Madsen. PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J. Neurophysiol. 78: 2231–2234, 1997. The outside-out recording mode of the patch-clamp technique was used to study modulatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) on N-methyl-d-aspartate (NMDA) receptor activity in cultured chick cortical neurons. Biphasic concentration-dependent effects of PACAP38 on channel opening frequency induced by NMDA (20 μM) and glycine (1 μM) were found, with low concentrations (0.5–2 nM) of PACAP38 increasing activity and higher concentrations (10–1,000 nM) causing inhibition. These effects were reversible, reduced with higher concentrations of glycine (2–10 μM) but not by 200 μM NMDA, and inhibited by 10 μM 7-chlorokynurenic acid. In addition, 1 μM PACAP6–38 (a PACAP antagonist) inhibited channel activity due to 20 μM NMDA and 1 μM glycine by 66%, and this inhibition was reduced to 13% in the additional presence of 2 nM PACAP38. These observations suggest thatPACAP38 has a direct modulatory effect on the NMDA receptor that is independent of intracellular second messengers and probably mediated through the glycine coagonist site(s).


2019 ◽  
Vol 20 (14) ◽  
pp. 3394 ◽  
Author(s):  
Kübra Bunte ◽  
Thomas Beikler

Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.


Sign in / Sign up

Export Citation Format

Share Document