scholarly journals FcER1: A Novel Molecule Implicated in the Progression of Human Diabetic Kidney Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Swastika Sur ◽  
Mark Nguyen ◽  
Patrick Boada ◽  
Tara K. Sigdel ◽  
Hans Sollinger ◽  
...  

Diabetic kidney disease (DKD) is a key microvascular complication of diabetes, with few therapies for targeting renal disease pathogenesis and progression. We performed transcriptional and protein studies on 103 unique blood and kidney tissue samples from patients with and without diabetes to understand the pathophysiology of DKD injury and its progression. The study was based on the use of 3 unique patient cohorts: peripheral blood mononuclear cell (PBMC) transcriptional studies were conducted on 30 patients with DKD with advancing kidney injury; Gene Expression Omnibus (GEO) data was downloaded, containing transcriptional measures from 51 microdissected glomerulous from patients with DKD. Additionally, 12 independent kidney tissue sections from patients with or without DKD were used for validation of target genes in diabetic kidney injury by kidney tissue immunohistochemistry and immunofluorescence. PBMC DKD transcriptional analysis, identified 853 genes (p < 0.05) with increasing expression with progression of albuminuria and kidney injury in patients with diabetes. GEO data was downloaded, normalized, and analyzed for significantly changed genes. Of the 325 significantly up regulated genes in DKD glomerulous (p < 0.05), 28 overlapped in PBMC and diabetic kidney, with perturbed FcER1 signaling as a significantly enriched canonical pathway. FcER1 was validated to be significantly increased in advanced DKD, where it was also seen to be specifically co-expressed in the kidney biopsy with tissue mast cells. In conclusion, we demonstrate how leveraging public and private human transcriptional datasets can discover and validate innate immunity and inflammation as key mechanistic pathways in DKD progression, and uncover FcER1 as a putative new DKD target for rational drug design.

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jan Wysocki ◽  
Minghao Ye ◽  
Ahmed M Khattab ◽  
Yashpal Kanwar ◽  
Mark Osborn ◽  
...  

ACE2 is a monocarboxypeptidase that by converting AngII to Ang1-7 should down-regulate the renin-angiotensin system and therefore provide a means to therapeutically target diabetic kidney disease, a condition where the kidney RAS is overactive. Previous work indicated that soluble human recombinant (r)ACE2 administration for 4 weeks attenuated kidney injury in diabetic Akita mice. Whether such effect of rACE2 can be confirmed and attributed to augmented ACE2 activity is uncertain because chronic use of human rACE2 in mice induces immunogenicity and the development of antibodies that neutralize serum ACE2 activity. To examine the effect of chronic amplification of circulating ACE2 on kidney injury caused by STZ-induced diabetes and to circumvent the immunogenicity arising from xenogeneic ACE2, ACE2 of mouse origin was administered to mice using either daily i.p. injections (1 mg/kg) of mrACE2 for 4 weeks or after 20 weeks of ACE2 mini-circle (MC) (10-30ug/mouse) administration. MC provides a form of gene delivery that is resistant to gene silencing and, in addition, greatly optimizes long-term in vivo overexpression of proteins of interest. ACE2MC resulted in a profound and sustained increase in serum ACE2 activity (2.4±0.3 vs. 497±135 RFU/ul/hr, p<0.01) but kidney ACE2 activity was unchanged (17.4±1.3 vs. 19.0±0.8 RFU/ug prot/hr). mACE2-treated mice injected with STZ developed diabetes similar to sham mice injected with STZ. Systolic BP was not different between non-diabetic mice, sham STZ-mice, and STZ-mice receiving mACE2 by either i.p. mrACE2 or ACE2MC. Urinary albumin was similarly increased in sham STZ-mice and in STZ-mice receiving mACE2. Glomerular mesangial score and glomerular cellularity were both increased to a similar extent in sham STZ-mice and in STZ-mice with mACE2 administration, as compared to non-diabetic controls. In conclusion, profound and long-term augmentation of ACE2 activity confined to the circulation is not sufficient to attenuate glomerular pathology and albuminuria in STZ-induced diabetic kidney disease probably because of lack of kidney delivery of ACE2. Strategies to achieve over-expression of ACE2 at the kidney level are needed to demonstrate a beneficial effect of this enzyme on diabetic kidney disease.


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rong Li ◽  
Arthur C. K. Chung ◽  
Xueqing Yu ◽  
Hui Y. Lan

Rapid growth of diabetes and diabetic kidney disease exerts a great burden on society. Owing to the lack of effective treatments for diabetic kidney disease, treatment relies on drugs that either reduces its progression or involve renal replacement therapies, such as dialysis and kidney transplantation. It is urgent to search for biomarkers for early diagnosis and effective therapy. The discovery of microRNAs had lead to a new era of post-transcriptional regulators of gene expression. Studies from cells, experimental animal models and patients under diabetic conditions demonstrate that expression patterns of microRNAs are altered during the progression of diabetic kidney disease. Functional studies indicate that the ability of microRNAs to bind 3′ untranslated region of messenger RNA not only shows their capability to regulate expression of target genes, but also their therapeutic potential to diabetic kidney disease. The presence of microRNAs in plasma, serum, and urine has been shown to be possible biomarkers in diabetic kidney disease. Therefore, identification of the pathogenic role of microRNAs possesses an important clinical impact in terms of prevention and treatment of progression in diabetic kidney disease because it allows us to design novel and specific therapies and diagnostic tools for diabetic kidney disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1754
Author(s):  
Itaru Monno ◽  
Yoshio Ogura ◽  
Jing Xu ◽  
Daisuke Koya ◽  
Munehiro Kitada

Lifestyle improvement, including through exercise, has been recognized as an important mode of therapy for the suppression of diabetic kidney disease (DKD). However, the detailed molecular mechanisms by which exercise exerts beneficial effects in the suppression of DKD have not yet been fully elucidated. In this study, we investigate the effects of treadmill exercise training (TET) for 8 weeks (13 m/min, 30 min/day, 5 days/week) on kidney injuries of type 2 diabetic male rats with obesity (Wistar fatty (fa/fa) rats: WFRs) at 36 weeks of age. TET significantly suppressed the levels of albuminuria and urinary liver-type fatty-acid-binding protein (L-FABP), tubulointerstitial fibrosis, inflammation, and oxidative stress in the kidneys of WFRs. In addition, TET mitigated excessive apoptosis and restored autophagy in the renal cortex, as well as suppressed the development of morphological abnormalities in the mitochondria of proximal tubular cells, which were also accompanied by the restoration of AMP-activated kinase (AMPK) activity and suppression of the mechanistic target of rapamycin complex 1 (mTORC1). In conclusion, TET ameliorates diabetes-induced kidney injury in type 2 diabetic fatty rats.


2021 ◽  
Vol Volume 14 ◽  
pp. 23-31 ◽  
Author(s):  
Ravindra Attur Prabhu ◽  
Srinivas V Shenoy ◽  
Shankar Prasad Nagaraju ◽  
Dharshan Rangaswamy ◽  
Indu Ramachandra Rao ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 200-208 ◽  
Author(s):  
Kalani L. Raphael ◽  
Tom Greene ◽  
Guo Wei ◽  
Tristin Bullshoe ◽  
Kunani Tuttle ◽  
...  

Background and objectivesIn early-phase studies of individuals with hypertensive CKD and normal serum total CO2, sodium bicarbonate reduced urinary TGF-β1 levels and preserved kidney function. The effect of sodium bicarbonate on kidney fibrosis and injury markers in individuals with diabetic kidney disease and normal serum total CO2 is unknown.Design, setting, participants, & measurementsWe conducted a randomized, double-blinded, placebo-controlled study in 74 United States veterans with type 1 or 2 diabetes mellitus, eGFR of 15–89 ml/min per 1.73 m2, urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g, and serum total CO2 of 22–28 meq/L. Participants received oral sodium bicarbonate (0.5 meq/kg lean body wt per day; n=35) or placebo (n=39) for 6 months. The primary outcome was change in urinary TGF-β1-to-creatinine from baseline to months 3 and 6. Secondary outcomes included changes in urinary kidney injury molecule-1 (KIM-1)-to-creatinine, fibronectin-to-creatinine, neutrophil gelatinase-associated lipocalin (NGAL)-to-creatinine, and UACR from baseline to months 3 and 6.ResultsKey baseline characteristics were age 72±8 years, eGFR of 51±18 ml/min per 1.73 m2, and serum total CO2 of 24±2 meq/L. Sodium bicarbonate treatment increased mean total CO2 by 1.2 (95% confidence interval [95% CI], 0.3 to 2.1) meq/L, increased urinary pH by 0.6 (95% CI, 0.5 to 0.8), and decreased urinary ammonium excretion by 5 (95% CI, 0 to 11) meq/d and urinary titratable acid excretion by 11 (95% CI, 5 to 18) meq/d. Sodium bicarbonate did not significantly change urinary TGF-β1/creatinine (difference in change, 13%, 95% CI, −10% to 40%; change within the sodium bicarbonate group, 8%, 95% CI, −10% to 28%; change within the placebo group, −4%, 95% CI, −19% to 13%). Similarly, no significant effect on KIM-1-to-creatinine (difference in change, −10%, 95% CI, −38% to 31%), fibronectin-to-creatinine (8%, 95% CI, −15% to 37%), NGAL-to-creatinine (−33%, 95% CI, −56% to 4%), or UACR (1%, 95% CI, −25% to 36%) was observed.ConclusionsIn nonacidotic diabetic kidney disease, sodium bicarbonate did not significantly reduce urinary TGF-β1, KIM-1, fibronectin, NGAL, or UACR over 6 months.


Author(s):  
Jiten Patel ◽  
Jose Torrealba ◽  
Emilio Poggio ◽  
Jack Bebiak ◽  
Charles Alpers ◽  
...  

The Kidney Precision Medicine Project (KPMP) seeks to establish a molecular atlas of the kidney in health and disease and improve our understanding of the molecular drivers of chronic kidney disease and acute kidney injury. Herein, we describe the case of a 66-year-old woman with chronic kidney disease who underwent a protocol KPMP kidney biopsy. Her clinical history included well-controlled diabetes mellitus, hypertension, and proteinuria. The patient's histopathology was consistent with modest hypertension-related kidney injury, without overt diabetic kidney disease (DKD). Transcriptomic signatures of the glomerulus, interstitium, and tubular subsegments were obtained from laser microdissected tissue. The molecular signatures uncovered revealed evidence of early DKD adaptation and ongoing active tubular injury with enriched pathways related to mesangial cell hypertrophy, glycosaminoglycan biosynthesis, and apoptosis. Molecular evidence of DKD was found across the nephron. Novel molecular assays can supplement and enrich the histopathologic diagnosis obtained from a kidney biopsy.


Sign in / Sign up

Export Citation Format

Share Document