scholarly journals DNA Based Vaccine Expressing SARS-CoV-2 Spike-CD40L Fusion Protein Confers Protection Against Challenge in a Syrian Hamster Model

2022 ◽  
Vol 12 ◽  
Author(s):  
Levi A. Tamming ◽  
Diana Duque ◽  
Anh Tran ◽  
Wanyue Zhang ◽  
Annabelle Pfeifle ◽  
...  

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.

2007 ◽  
Vol 82 (3) ◽  
pp. 1332-1338 ◽  
Author(s):  
Jay W. Hooper ◽  
Anthony M. Ferro ◽  
Victoria Wahl-Jensen

ABSTRACT Hantavirus pulmonary syndrome (HPS) is a highly pathogenic disease (40% case fatality rate) carried by rodents chronically infected with certain viruses within the genus Hantavirus of the family Bunyaviridae. The primary mode of transmission to humans is thought to be inhalation of excreta from infected rodents; however, ingestion of contaminated material and rodent bites are also possible modes of transmission. Person-to-person transmission of HPS caused by one species of hantavirus, Andes virus (ANDV), has been reported. Previously, we reported that ANDV injected intramuscularly causes a disease in Syrian hamsters that closely resembles HPS in humans. Here we tested whether ANDV was lethal in hamsters when it was administered by routes that more accurately model the most common routes of human infection, i.e., the subcutaneous, intranasal, and intragastric routes. We discovered that ANDV was lethal by all three routes. Remarkably, even at very low doses, ANDV was highly pathogenic when it was introduced by the mucosal routes (50% lethal dose [LD50], ∼100 PFU). We performed passive transfer experiments to test the capacity of neutralizing antibodies to protect against lethal intranasal challenge. The neutralizing antibodies used in these experiments were produced in rabbits vaccinated by electroporation with a previously described ANDV M gene-based DNA vaccine, pWRG/AND-M. Hamsters that were administered immune serum on days −1 and +5 relative to challenge were protected against intranasal challenge (21 LD50). These findings demonstrate the utility of using the ANDV hamster model to study transmission across mucosal barriers and provide evidence that neutralizing antibodies produced by DNA vaccine technology can be used to protect against challenge by the respiratory route.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Jorma Hinkula ◽  
Stéphanie Devignot ◽  
Sara Åkerström ◽  
Helen Karlberg ◽  
Eva Wattrang ◽  
...  

ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR−/−) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S390-S391
Author(s):  
Viviane M Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles C Reed ◽  
...  

Abstract Background Global surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with increased transmissibility, disease severity, and resistance to neutralization by current vaccines under emergency use authorization (EUA). Here we assessed cross-immune responses of INO-4800 vaccinated subjects against SARS-CoV-2 VOCs. Methods We used a SARS-CoV-2 IgG ELISA and a pseudo neutralization assay to assess humoral responses, and an IFNγ ELISpot to measure cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. Results IgG binding titers were not impacted between wild-type (WT) and B.1.1.7 or B.1.351 variants. An average 1.9-fold reduction was observed for the P.1 variant in subjects tested at week 8 after receiving two doses of INO-4800 (Figure 1a). We performed a SARS-CoV-2 pseudovirus neutralization assay using sera collected from 13 subjects two weeks after administration of a third dose of either 0.5 mg, 1 mg, or 2 mg of INO-4800. Neutralization was detected against WT and the emerging variants in all samples tested. The mean ID50 titers for the WT, B.1.1.7, B.1.351 and P.1. were 643 (range: 70-729), 295 (range: 46-886), 105 (range: 25-309), and 664 (range: 25-2087), respectively. Compared to WT, there was a 2.1 and 6.9-fold reduction for B.1.1.7 and B.1.351, respectively, while there was no difference between WT and the P.1 variant (Figure 1b). Next, we compared cellular immune responses to WT and SARS-CoV-2 Spike variants elicited by INO-4800 vaccination. We observed similar cellular responses to WT (median = 82.2 IQR = 58.9-205.3), B.1.1.7 (79.4, IQR = 38.9- 179.7), B.1.351 (80, IQR = 40.0-208.6) and P.1 (78.3, IQR = 53.1-177.8) Spike peptides (Figure 2). Conclusion INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested. Disclosures Viviane M. Andrade, PhD, Inovio Pharmaceuticals Inc. (Employee) Aaron Christensen-Quick, PhD, Inovio Pharmaceuticals, Inc (Employee) Joseph Agnes, PhD, Inovio (Employee, Shareholder) Jared Tur, PhD, Inovio (Employee) Charles C. Reed, PhD, Inovio Pharmaceuticals (Employee, Shareholder) Richa Kalia, MS, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, I have stock options with Inovio Pharmaceuticals as an employee.) Idania Marrero, MD, PhD, Inovio Pharmaceuticals (Employee, Shareholder) Dustin Elwood, PhD, Inovio Pharmaceuticals (Employee) Katherine Schultheis, MSc, Inovio Pharmaceuticals (Employee) Emma Reuschel, PhD, Inovio Pharmaceuticals (Employee) Trevor McMullan, MSc, Inovio (Shareholder) Patrick Pezzoli, BS, Inovio (Employee) Kimberly A. Kraynyak, PhD, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, Stock options) Albert Sylvester, MS, Inovio (Employee, Shareholder) Mammen P. Mammen Jr., MD, Inovio Pharmaceuticals (Employee) J Joseph Kim, PhD, Inovio (Employee) David Weiner, PhD, Inovio (Board Member, Grant/Research Support, Shareholder, I serve on the SAB in addition to the above activities) Trevor R. F. Smith, PhD, Inovio (Employee, Shareholder) Stephanie Ramos, PhD, Inovio Pharmaceuticals (Employee) Laurent Humeau, PhD, Inovio Pharmaceuticals (Employee) Jean Boyer, PhD, Inovio (Employee) Kate Broderick, PhD, Inovio (Employee)


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 852
Author(s):  
Khalid A. Alluhaybi ◽  
Rahaf H. Alharbi ◽  
Rowa Y. Alhabbab ◽  
Najwa D. Aljehani ◽  
Sawsan S. Alamri ◽  
...  

The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is worthy of further preclinical and clinical evaluation.


2021 ◽  
Author(s):  
Sreelekshmy Mohandas ◽  
Pragya D Yadav ◽  
Dimpal Nyayanit ◽  
Gururaj Deshpande ◽  
Anita Shete-Aich ◽  
...  

AbstractThe emergence of SARS-CoV-2 variants has posed a serious challenge to public health system and vaccination programs across the globe. We have studied the pathogenicity and virus shedding pattern of the SARS-CoV-2 VOC 202012/01 and compared with D614G variant in Syrian hamsters. VOC 202012/01 could produce disease in hamsters characterized by body weight loss and respiratory tract tropism but mild lung pathology. Further, we also documented that neutralizing antibodies developed against VOC 202012/01 could equally neutralize D614G variant. Higher load of VOC 202012/01 in the nasal wash specimens was observed during the first week of infection outcompeting the D614G variant. The findings suggest increased fitness of VOC 202012/01 to the upper respiratory tract which could lead to higher transmission. Further investigations are needed to understand the transmissibility of new variants.One-Sentence SummarySARS-CoV-2 VOC 202012/01 infected hamsters demonstrated high viral RNA shedding through the nasal secretions and significant body weight loss with mild lung pathology compared to the D614G variant.


2000 ◽  
Vol 74 (7) ◽  
pp. 3345-3352 ◽  
Author(s):  
Narendra Chirmule ◽  
Steven E. Raper ◽  
Linda Burkly ◽  
David Thomas ◽  
John Tazelaar ◽  
...  

ABSTRACT The interaction between CD40 on B cells and CD40 ligand (CD40L) on activated T cells is important for B-cell differentiation in T-cell-dependent humoral responses. We have extended our previous murine studies of CD40-CD40L in adenoviral vector-mediated immune responses to rhesus monkeys. Primary immune responses to adenoviral vectors and the ability to readminister vector were studied in rhesus monkeys in the presence or absence of a transient treatment with a humanized anti-CD40 ligand antibody (hu5C8). Adult animals were treated with hu5C8 at the time vector was instilled into the lung. Immunological analyses demonstrated suppression of adenovirus-induced lymphoproliferation and cytokine responses (interleukin-2 [IL-2], gamma interferon, IL-4, and IL-10) in hu5C8-treated animals. Animals treated with hu5C8 secreted adenovirus-specific immunoglobulin M (IgM) levels comparable to control animals, but did not secrete IgA or develop neutralizing antibodies; consequently, the animals could be readministered with adenovirus vector expressing alkaline phosphatase. A second study was designed to examine the long-term effects on immune functions of a short course of hu5C8. Acute hu5C8 treatment resulted in significant and prolonged inhibition of the adenovirus-specific humoral response well beyond the time hu5C8 effects were no longer significant. These studies demonstrate the potential of hu5C8 as an immunomodulatory regimen to enable administration of adenoviral vectors, and they advocate testing this model in humans.


Author(s):  
Sreelekshmy Mohandas ◽  
Pragya D Yadav ◽  
Anita Shete ◽  
Priya Abraham ◽  
Krishna Mohan ◽  
...  

Abstract The availability of a safe and effective vaccine would be the eventual measure to deal with SARS-CoV-2 threat. Here, we have developed and assessed the immunogenicity and protective efficacy of an inactivated SARS-CoV-2 vaccine (BBV152) in hamsters. Three dose vaccination regime with three formulations of BBV152 induced significant titres of SARS-CoV-2 specific IgG and neutralizing antibodies. The formulation with imidazoquinoline adsorbed on alum adjuvant remarkably generated a quick and robust immune response. Th1 biased immune response was demonstrated by the detection of IgG2 antibodies. Post-SARS-CoV-2 infection, vaccinated hamsters did not show any histopathological changes in the lungs. The protection of the hamsters was evident by the rapid clearance of the virus from lower respiratory tract, reduced virus load in upper respiratory tract, absence of lung pathology and robust humoral immune response. These findings confirm the immunogenic potential of BBV152 and further protection of hamsters challenged with SARS-CoV-2.


2021 ◽  
Author(s):  
Charles C Reed ◽  
Katherine Schultheis ◽  
Viviane M Andrade ◽  
Richa Kalia ◽  
Jared Tur ◽  
...  

First generation COVID-19 vaccines matched to the original Wuhan-Hu-1 (WT) strain are showing reduced efficacy against emerging SARS-CoV-2 variants of concern (VOC). In response, next generation vaccines either matched to a single variant or designed to provide broader coverage across the VOC group are being developed. The latter pan-SARS-CoV-2 approach may offer substantial advantages in terms of cross-strain protection, immune coverage, reduced susceptibility to escape mutants, and non-restricted geographical use. Here we have employed our SynCon® design technology to construct a DNA vaccine expressing a pan-Spike immunogen (INO-4802) to induce broad immunity across SARS-CoV-2 variants. Compared to WT and VOC-matched vaccines which showed limited cross-neutralizing activity, INO-4802 induced potent neutralizing antibodies and T cell responses against WT as well as B.1.1.7, P.1, and B.1.351 VOCs in a murine model. In addition, a hamster vaccination model showed enhanced humoral responses against VOCs in a heterologous pWT prime/INO-4802 boost setting. These results demonstrate the potential of the pan-SARS-CoV-2 vaccine, INO-4802 to induce cross-reactive immune responses against emerging VOCs as either a standalone vaccine, or as a potential boost for individuals previously immunized with WT-matched vaccines.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kirill V. Kalnin ◽  
Timothy Plitnik ◽  
Michael Kishko ◽  
Jinrong Zhang ◽  
Donghui Zhang ◽  
...  

AbstractEmergency use authorization of COVID vaccines has brought hope to mitigate pandemic of coronavirus disease 2019 (COVID-19). However, there remains a need for additional effective vaccines to meet the global demand and address the potential new viral variants. mRNA technologies offer an expeditious path alternative to traditional vaccine approaches. Here we describe the efforts to utilize an mRNA platform for rational design and evaluations of mRNA vaccine candidates based on the spike (S) glycoprotein of SARS-CoV-2. Several mRNA constructs of S-protein, including wild type, a pre-fusion stabilized mutant (2P), a furin cleavage-site mutant (GSAS) and a double mutant form (2P/GSAS), as well as others, were tested in animal models for their capacity to elicit neutralizing antibodies (nAbs). The lead 2P/GSAS candidate was further assessed in dose-ranging studies in mice and Cynomolgus macaques, and for efficacy in a Syrian golden hamster model. The selected 2P/GSAS vaccine formulation, designated MRT5500, elicited potent nAbs as measured in neutralization assays in all three preclinical models and more importantly, protected against SARS-CoV-2-induced weight loss and lung pathology in hamsters. In addition, MRT5500 elicited TH1-biased responses in both mouse and non-human primate (NHP), thus alleviating a hypothetical concern of potential vaccine-associated enhanced respiratory diseases known associated with TH2-biased responses. These data position MRT5500 as a viable vaccine candidate for entering clinical development.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009383
Author(s):  
Drishya Kurup ◽  
Delphine C. Malherbe ◽  
Christoph Wirblich ◽  
Rachael Lambert ◽  
Adam J. Ronk ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Sign in / Sign up

Export Citation Format

Share Document