scholarly journals Hypozincemia in COVID-19 Patients Correlates With Stronger Antibody Response

2022 ◽  
Vol 12 ◽  
Author(s):  
Wenye Xu ◽  
Yingzhi Liu ◽  
Xuan Zou ◽  
Huanle Luo ◽  
Weihua Wu ◽  
...  

Zinc ion as an enzyme cofactor exhibits antiviral and anti-inflammatory activity during infection, but circulating zinc ion level during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is unclear. This study aimed to evaluate serum zinc ion level in Coronavirus Disease 2019 (COVID-19) patients and healthy subjects, as well as its correlation with antibodies against SARS-CoV-2. 114 COVID-19 patients and 48 healthy subjects (38 healthy volunteers and 10 close contacts of patients with COVID-19) were included. Zinc ion concentration and levels of antibodies against SARS-CoV-2 Spike 1 + Spike 2 proteins, nucleocapsid protein, and receptor-binding domain in serum were measured. Results showed that the concentration of zinc ion in serum from COVID-19 patients [median: 6.4 nmol/mL (IQR 1.5 – 12.0 nmol/mL)] were significantly lower than that from the healthy subjects [median: 15.0 nmol/mL (IQR 11.9 – 18.8 nmol/mL)] (p < 0.001) and the difference remained significant after age stratification (p < 0.001) or when the patients were at the recovery stage (p < 0.001). Furthermore, COVID-19 patients with more severe hypozincemia showed higher levels of IgG against the receptor-binding domain of SARS-CoV-2 spike protein. Further studies to confirm the effect of zinc supplementation on improving the outcomes of COVID-19, including antibody response against SARS-CoV-2, are warranted.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tiong Kit Tan ◽  
Pramila Rijal ◽  
Rolle Rahikainen ◽  
Anthony H. Keeble ◽  
Lisa Schimanski ◽  
...  

AbstractThere is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


2020 ◽  
Author(s):  
Tiong Kit Tan ◽  
Pramila Rijal ◽  
Rolle Rahikainen ◽  
Anthony H. Keeble ◽  
Lisa Schimanski ◽  
...  

ABSTRACTThere is dire need for an effective and affordable vaccine against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a modular virus-like particle vaccine candidate displaying the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) using SpyTag/SpyCatcher technology (RBD-SpyVLP). Low doses of RBD-SpyVLP in a prime-boost regimen induced a strong neutralising antibody response in mice and pigs that was superior to convalescent human sera. We evaluated antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we showed that RBD-SpyVLP induced a polyclonal antibody response that recognised all key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. The induction of potent and polyclonal antibody responses by RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic. Moreover, RBD-SpyVLP is highly resilient, thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence.


2021 ◽  
Author(s):  
Lisa R Volpatti ◽  
Rachel P Wallace ◽  
Shijie Cao ◽  
Michal Raczy ◽  
Ruyi Wang ◽  
...  

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.


Author(s):  
Tara L. Steffen ◽  
E. Taylor Stone ◽  
Mariah Hassert ◽  
Elizabeth Geerling ◽  
Brian T. Grimberg ◽  
...  

AbstractNatural infection of SARS-CoV-2 in humans leads to the development of a strong neutralizing antibody response, however the immunodominant targets of the polyclonal neutralizing antibody response are still unknown. Here, we functionally define the role SARS-CoV-2 spike plays as a target of the human neutralizing antibody response. In this study, we identify the spike protein subunits that contain antigenic determinants and examine the neutralization capacity of polyclonal sera from a cohort of patients that tested qRT-PCR-positive for SARS-CoV-2. Using an ELISA format, we assessed binding of human sera to spike subunit 1 (S1), spike subunit 2 (S2) and the receptor binding domain (RBD) of spike. To functionally identify the key target of neutralizing antibody, we depleted sera of subunit-specific antibodies to determine the contribution of these individual subunits to the antigen-specific neutralizing antibody response. We show that epitopes within RBD are the target of a majority of the neutralizing antibodies in the human polyclonal antibody response. These data provide critical information for vaccine development and development of sensitive and specific serological testing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timothy J. C. Tan ◽  
Meng Yuan ◽  
Kaylee Kuzelka ◽  
Gilberto C. Padron ◽  
Jacob R. Beal ◽  
...  

AbstractSince the COVID-19 pandemic onset, the antibody response to SARS-CoV-2 has been extensively characterized. Antibodies to the receptor binding domain (RBD) on the spike protein are frequently encoded by IGHV3-53/3-66 with a short complementarity-determining region (CDR) H3. Germline-encoded sequence motifs in heavy chain CDRs H1 and H2 have a major function, but whether any common motifs are present in CDR H3, which is often critical for binding specificity, is not clear. Here, we identify two public clonotypes of IGHV3-53/3-66 RBD antibodies with a 9-residue CDR H3 that pair with different light chains. Distinct sequence motifs on CDR H3 are present in the two public clonotypes that seem to be related to differential light chain pairing. Additionally, we show that Y58F is a common somatic hypermutation that results in increased binding affinity of IGHV3-53/3-66 RBD antibodies with a short CDR H3. These results advance understanding of the antibody response to SARS-CoV-2.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ross S. Greenberg ◽  
Jake A. Ruddy ◽  
Brian J. Boyarsky ◽  
William A. Werbel ◽  
Jacqueline M. Garonzik-Wang ◽  
...  

Abstract Background Patients with multiple myeloma (MM) were excluded from the original SARS-CoV-2 mRNA vaccine trials, which may influence vaccine hesitancy in this population. We prospectively characterized the safety and immunogenicity of two-dose SARS-CoV-2 mRNA vaccination in 44 patients with MM, who underwent vaccination from 12/17/2020 to 3/18/2021. Results Rates adverse reactions were low and consistent with those documented in vaccine trials. Among those on MM therapy, 93% developed detectable anti-receptor binding domain (RBD) antibodies after dose 2, while 94% of patients not on MM therapy seroconverted. Conclusions Two-dose SARS-CoV-2 mRNA vaccination is mildly reactogenic and leads to high rates of seroconversion in patients with MM. These findings can provide reassurance to MM patients who are hesitant to receive SARS-CoV-2 mRNA vaccines.


2020 ◽  
Author(s):  
Maria G. Noval ◽  
Maria E. Kaczmarek ◽  
Akiko Koide ◽  
Bruno A. Rodriguez-Rodriguez ◽  
Ping Louie ◽  
...  

AbstractUnderstanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Here, we determine the ability of sera from 101 recovered healthcare workers to neutralize both authentic SARS-CoV-2 and SARS-CoV-2 pseudotyped virus and address their antibody titers against SARS-CoV-2 nucleoprotein and spike receptor-binding domain. Interestingly, the majority of individuals have low neutralization capacity and only 6% of the healthcare workers showed high neutralizing titers against both authentic SARS-CoV-2 virus and the pseudotyped virus. We found the antibody response to SARS-CoV-2 infection generates antigen-specific isotypes as well as a diverse combination of antibody isotypes, with high titers of IgG, IgM and IgA against both antigens correlating with neutralization capacity. Importantly, we found that neutralization correlated with antibody titers as quantified by ELISA. This suggests that an ELISA assay can be used to determine seroneutralization potential. Altogether, our work provides a snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides evidence that possessing multiple antibody isotypes may play an important role in SARS-CoV-2 neutralization.


2021 ◽  
Author(s):  
S Momsen Reincke ◽  
Meng Yuan ◽  
Hans-Christian Kornau ◽  
Victor M Corman ◽  
Scott van Hoof ◽  
...  

SARS-CoV-2 Beta variant of concern (VOC) resists neutralization by major classes of antibodies from non-VOC COVID-19 patients and vaccinated individuals. Here, serum of Beta variant infected patients revealed reduced cross-neutralization of non-VOC virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of novel VOC-specific clonotypes and accommodation of VOC-defining amino acids into a major non-VOC antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with non-VOC-elicited antibodies, including a public VH1-58 clonotype targeting the RBD ridge independent of VOC mutations. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift with implications for design of next-generation vaccines and therapeutics.


2021 ◽  
Vol 11 ◽  
Author(s):  
Farha Mehdi ◽  
Souvick Chattopadhyay ◽  
Ramachandran Thiruvengadam ◽  
Sarla Yadav ◽  
Manjit Kumar ◽  
...  

SARS-CoV-2 antibody detection assays are crucial for gathering seroepidemiological information and monitoring the sustainability of antibody response against the virus. The SARS-CoV-2 Spike protein’s receptor-binding domain (RBD) is a very specific target for anti-SARS-CoV-2 antibodies detection. Moreover, many neutralizing antibodies are mapped to this domain, linking antibody response to RBD with neutralizing potential. Detection of IgG antibodies, rather than IgM or total antibodies, against RBD is likely to play a larger role in understanding antibody-mediated protection and vaccine response. Here we describe a rapid and stable RBD-based IgG ELISA test obtained through extensive optimization of the assay components and conditions. The test showed a specificity of 99.79% (95% CI: 98.82–99.99%) in a panel of pre-pandemic samples (n = 470) from different groups, i.e., pregnancy, fever, HCV, HBV, and autoantibodies positive. Test sensitivity was evaluated using sera from SARS-CoV-2 RT-PCR positive individuals (n = 312) and found to be 53.33% (95% CI: 37.87–68.34%), 80.47% (95% CI: 72.53–86.94%), and 88.24% (95% CI: 82.05–92.88%) in panel 1 (days 0–13), panel 2 (days 14–20) and panel 3 (days 21–27), respectively. Higher sensitivity was achieved in symptomatic individuals and reached 92.14% (95% CI: 86.38–96.01%) for panel 3. Our test, with a shorter runtime, showed higher sensitivity than parallelly tested commercial ELISAs for SARS-CoV-2-IgG, i.e., Euroimmun and Zydus, even when equivocal results in the commercial ELISAs were considered positive. None of the tests, which are using different antigens, could detect anti-SARS-CoV-2 IgGs in 10.5% RT-PCR positive individuals by the fourth week, suggesting the lack of IgG response.


Sign in / Sign up

Export Citation Format

Share Document