scholarly journals Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Yen-Ju Lin ◽  
Alexandra Goretzki ◽  
Stefan Schülke

Over the last decades, the frequency of allergic disorders has steadily increased. Immunologically, allergies are caused by abnormal immune responses directed against otherwise harmless antigens derived from our environment. Two of the main cell types driving allergic sensitization and inflammation are IgE-producing plasma cells and Th2 cells. The acute activation of T and B cells, their differentiation into effector cells, as well as the formation of immunological memory are paralleled by distinct changes in cellular metabolism. Understanding the functional consequences of these metabolic changes is the focus of a new research field termed “immune metabolism”. Currently, the contribution of metabolic changes in T and B cells to either the development or maintenance of allergies is not completely understood. Therefore, this mini review will introduce the fundamentals of energy metabolism, its connection to immune metabolism, and subsequently focus on the metabolic phenotypes of IL-4-activated B cells and Th2 cells.

2010 ◽  
Vol 184 (9) ◽  
pp. 4947-4954 ◽  
Author(s):  
Tobias Rogosch ◽  
Sebastian Kerzel ◽  
Larisa Sikula ◽  
Katrin Gentil ◽  
Michael Liebetruth ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3251-3251
Author(s):  
Rita Shaknovich ◽  
Katia Basso ◽  
Govind Bhagat ◽  
Bachir Alobeid ◽  
Giorgio Cattoretti

Abstract EBV-associated B-cell Post-Transpant Lymphoproliferative Disorders (PTLDs) represent a diverse group of lesions morphologically, in clinical presentation and behaviour, ranging from early reversible lesions to monomorphic aggressive lymphomas. Polymorphic cases, which represent the focus of our analysis, contain a mixture of cells in various EBV latency stages, defined by EBNA1, EBNA2 and LMP1 immunostaining. LMP1 is a key viral protein for cellular transformation and, analogously to CD40, engages TNF Receptor Associated Proteins and activates NF-kB and NF-kB-responsive genes. We analyzed the protein signature of LMP1 in PTLDs and non-PTLD tonsils by double staining for LMP1, CD30, CD20, Pax5 and signaling molecules. A remarkably conserved set of proteins, associated with LMP1/CD40 signaling and NF-kB activation is expressed both in the EBV-infected lymphoid population in polymorphic PTLDs and in a normal B-cell subset(s) in reactive tonsils. These proteins include highly expressed CD30, JunB, nuclear cRel, TRAF-1, Bcl-XL, MUM1, CCL22 and downregulated BCL6 and CD10. We observed that EBV infection, possibly through LMP1 and LMP2A signaling, results in varioius degrees of differentiation within the neoplastic clone. EBER+ terminally differentiated mucosa-associated IRTA-1+ marginal zone B-cells and CD138+ plasma cells were identified in most cases, including control post-transplant tonsils with no overt disease. We document for the first time in situ, in-vivo evidence of EBV latently infected post-Germinal Center B cells of marginal and plasma cell types in PTLDs. Polymorphic PTLD cases represent EBV-induced expansion of B cells, mimicking CD40L-like activated Peri/Interfollicular CD30+ normal B-cells.


2017 ◽  
Vol 12 (02) ◽  
pp. 78
Author(s):  
Nikolaos C Grigoriadis ◽  

Upstream targeting of both T and B cells is a rational therapeutic approach in multiple sclerosis (MS) in view of how both cell types and the interaction between them contribute to MS pathophysiology. This article will discuss this new way of thinking in MS: the targeting of both T and B cells, with a focus on the recently developed therapy, alemtuzumab (Lemtrada®, Genzyme, UK). Alemtuzumab depletes T and B lymphocytes, mainly via complement-dependent cytolysis and antibody-dependent cytolysis; depletion of B cells is not an enduring effect compared with the depletion of T cells. After dosing, CD4+ and CD8+ T cells and CD19 B cells decrease initially but increase over the following 11 months. During repopulation after alemtuzumab treatment, there is a shift in the relative proportions of T cell and B cell subsets whereby proportions of regulatory T cells and memory-phenotype T cells are increased and the proportion of naive T cells is decreased. A switch from a pro- to an anti-inflammatory phenotype and cytokine profile caused by alemtuzumab may underpin the long-lasting suppression of MS activity that has been observed in clinical trials. Alemtuzumab treatment is also associated with a consistently good safety and tolerability profile. Further, alemtuzumab appears to promote neurorehabilitation by improving measures of physical functioning, disability, measures of quality of life, and brain volume loss. Alemtuzumab therefore has the potential to reduce disease burden and improve substantially the prognosis for patients with MS.


2017 ◽  
Author(s):  
Joanne Dai ◽  
Micah A. Luftig

AbstractApoptosis is critical to B-cell maturation, but studies of apoptotic regulation in primary human B cells is lacking. Previously, we found that infecting human B cells with Epstein-Barr virus induces two different survival strategies (Priceet al., 2017). Here, we sought to better understand the mechanisms of apoptotic regulation in normal and activated B cells. Using intracellular BH3 profiling (iBH3), we defined the Bcl2-dependency of B-cell subsets from human peripheral blood and tonsillar lymphoid tissue as well as mitogen-activated B cells. We found that naïve and memory B cells were BCL-2 dependent, while germinal center B cells were MCL-1 dependent and plasma cells were BCL-XL dependent. Proliferating B cells activated by CpG or CD40L/IL-4 became more dependent upon MCL-1 and BCL-XL. As B-cell lymphomas often rely on survival mechanisms derived from normal and activated B cells, these findings offer new insight into potential therapeutic strategies for lymphomas.


1994 ◽  
Vol 61 (4) ◽  
pp. 553-562 ◽  
Author(s):  
Gabriela Perdigón ◽  
Mirta Rachid ◽  
Marta V. De Budeguer ◽  
Juan C. Valdez

SummaryThe effect of giving yogurt supplements to Balb/c mice on the various gut-associated lymphoid cells was studied. Animals were fed for 2, 5, 7 and 10 consecutive days. The different lymphoid cell types were identified and counted by haematoxylin–eosin staining of histological slices. The numbers of cells secreting IgA, IgG and IgM and the numbers of T lymphocytes were determined by direct immunofluorescence. The degree of activation of the intestinal macrophages in the small intestine was assessed by measuring the β-glucuronidase (EC 3.2.1.31) released into the intestinal fluid, and also by a histochemical method. Throughout the feeding period, there were no histological alterations in the gut, but there was marked cell infiltration, mainly of plasma cells and lymphocytes. The number of macrophages on the small intestine increased significantly after feeding for 2 d, while the β-glucuronidase activity was only slightly higher that of the controls. After a 7 d feeding period, the number of IgA secreting cells increased, while the values for cells secreting IgM and IgG and for T lymphocytes remained similar to those of the controls. The effect of giving yogurt on lymphoid cells associated with the large intestine was mainly on the numbers of IgA secreting B cells and T lymphocytes, with a marked increase during the whole feeding period in the latter type of cell. Since giving yogurt mainly enhanced the IgA secreting B cells in both small and large intestines, this increase would strengthen the host's defence mechanisms in the intestinal mucosa. Although the number of macrophages was increased, there was no enhancement in their activity, which might have harmed the host by producing an inflammatory response.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3515-3515
Author(s):  
Muntasir M Majumder ◽  
Aino Maija Leppä ◽  
Caroline A Heckman

Abstract Introduction Off-target cytotoxicity resulting in severe side effects and compromising patient survival often hampers the development of new cancer therapeutics. Understanding the complete drug response landscape of different cell populations is crucial to identify drugs that selectively eradicate the malignant cell population, but spare healthy cells. Here, we developed a high content, no wash, multi-parametric flow cytometry based assay that enables testing of blood cancer patient samples and simultaneously monitors the effects of several drugs on 11 hematopoietic cell types. The assay can be used to i) dissect malignant from healthy cell responses and predict off-target effects; ii) assess drug effects on immune cell subsets; iii) identify drugs that can potentially be repositioned to new blood cancer indications. Methods Mononuclear cells were prepared from bone marrow aspirates of 7 multiple myeloma (MM) and 3 acute myeloid leukemia (AML) patients plus the peripheral blood from a healthy donor, which were collected following informed consent and in compliance with the Declaration of Helsinki. Optimal cell density, antibody dilutions, incubation time, and wash versus no wash assay conditions for the selected antibody panels were determined. Cells were incubated at a density of 2 million cells/ml in either 96- or 384-well plates for 3 days. The antibodies were tested in two panels to study the effects of 6 drugs in 5 dilutions (1-10000 nM) (clofarabine, bortezomib, dexamethasone, navitoclax, venetoclax and omipalisib) on 11 cell populations, namely hematopoietic stem cells (HSCs) (CD34+CD38-), common progenitor cells (CPCs) (CD34+CD38+), monocytes (CD14+), B cells (CD45+CD19+), cytotoxic T cells (CD45+CD3+CD8+), T helper cells (CD45+CD3+CD4+), NK-T cells (CD45+CD3+CD56+), NK cells (CD45+CD56+CD3-), clonal plasma cells (CD138+CD38+), other plasma cells (CD138+CD38-) and granulocytes (CD45+, SSC++). Annexin-V and 7AAD were used to distinguish live cell populations from apoptotic and dead cells. After 1 h incubation with antibodies, the plates were read with the iQue Screener PLUS instrument (Intellicyt). Counts for each population were used to generate four parameter nonlinear regression fitted dose response curves with GraphPad Prism 7. Three samples were tested in duplicate to assess reproducibility. Results To decrease the complexity of the assay, we tested all antibodies under wash and no wash conditions, and found that results from both conditions were comparable. To minimize the amount of sample needed as well as maximize the number of drugs tested and cell populations that can be detected, we set up the assay in both 96- and 384-well plates. The assay was highly reproducible when samples were tested in replicate and was scalable to a 384-well format without compromising sensitivity to detect rare populations such as plasma cells. Due to the differentiation of immature cells to specialized cell types, the drug responses of specific populations tended to drift. HSCs (CD34+CD38-) were shown to be refractory to the tested drugs compared to CPCs characterized as (CD34+CD38+) and other cell types. Interestingly, the proteasome inhibitor bortezomib was cytotoxic to all cell populations except for CD138+CD38- plasma cells. Clofarabine, a nucleoside analog used to treat ALL, effectively targeted CPC, NK and B cells, while HSCs and plasma cells were resistant. The glucocorticoid and immunosuppressive drug dexamethasone specifically targeted B and NK cells compared to T cell populations (CD8+, CD4+), while NK-T cells were modestly sensitive. The cell population response patterns were similar in samples derived from MM, AML and healthy individuals, highlighting that the drug responses are highly cell type specific. Summary Using a high content, multi-parametric assay, we could rapidly assess the effect of several drugs on specific cell populations in individual patient samples. Our results demonstrate that many drugs preferentially affect different hematological cell lineages. Although heterogeneity was observed between individual patients, the pattern of cytotoxic response exhibited by specific cell types was consistent among samples derived from MM, AML and healthy donors. The assay will be useful to identify drugs with maximal on-target and minimal off-target specificity, and can potentially be used to guide treatment decision and predict patient response Disclosures Heckman: Celgene: Research Funding; Pfizer: Research Funding.


Author(s):  
Ida Franiak-Pietryga ◽  
Sayuri Miyauchi ◽  
Sangwoo Shawn Kim ◽  
P. Dominick Sanders ◽  
Whitney Sumner ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (25) ◽  
pp. 5173-5181 ◽  
Author(s):  
Michel Jourdan ◽  
Anouk Caraux ◽  
John De Vos ◽  
Geneviève Fiol ◽  
Marion Larroque ◽  
...  

Abstract Human plasma cells (PCs) and their precursors play an essential role in humoral immune response but are rare and difficult to harvest. We report the generation of human syndecan-1+ and immunoglobulin secreting PCs starting from memory B cells in a 3-step and 10-day (D) culture, including a 6-fold cell amplification. We report the detailed phenotypic and Affymetrix gene expression profiles of these in vitro PCs as well as of intermediate cells (activated B cells and plasmablasts) compared with memory B cells and bone marrow PCs, which is accessible through an open web ATLAS (http://amazonia.transcriptome.eu/). We show this B cell–to-PC differentiation to involve IRF4 and AICDA expressions in D4 activated B cells, decrease of PAX5 and BCL6 expressions, and increase in PRDM1 and XBP1 expressions in D7 plasmablasts and D10 PCs. It involves down-regulation of genes controlled by Pax5 and induction of genes controlled by Blimp-1 and XBP1 (unfold protein response). The detailed phenotype of D10 PCs resembles that of peripheral blood PCs detected after immunization of healthy donors. This in vitro model will facilitate further studies in PC biology. It will likewise be helpful to study PC dyscrasias, including multiple myeloma.


2004 ◽  
Vol 24 (6) ◽  
pp. 2455-2466 ◽  
Author(s):  
Michael G. Tomlinson ◽  
Lawrence P. Kane ◽  
Jennifer Su ◽  
Theresa A. Kadlecek ◽  
Marianne N. Mollenauer ◽  
...  

ABSTRACT The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. Btk is essential for B-cell receptor signaling, because mutations in Btk are responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice, whereas Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, but its role in antigen receptor signaling is not clear. In this study, we show that Tec protein is expressed at substantially lower levels in primary T and B cells relative to Itk and Btk, respectively. However, Tec is up-regulated upon T-cell activation and in Th1 and Th2 cells. In functional experiments that mimic Tec up-regulation, we find that Tec overexpression in lymphocyte cell lines is sufficient to induce phospholipase Cγ (PLC-γ) phosphorylation and NFAT (nuclear factor of activated T cells) activation. In contrast, overexpression of Btk, Itk, or Bmx does not induce NFAT activation. Tec-induced NFAT activation requires PLC-γ, but not the adapters LAT, SLP-76, and BLNK, which are required for Btk and Itk to couple to PLC-γ. Finally, we show that the unique effector function for Tec correlates with a unique subcellular localization. We hypothesize that Tec functions in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors.


Author(s):  
Federico Carlini ◽  
Federico Ivaldi ◽  
Francesca Gualandi ◽  
Ursula Boschert ◽  
Diego Centonze ◽  
...  

Abstract Deoxycytidine kinase (dCK) and 5’ deoxynucleotidase (NT5C2) are involved in metabolism of cladribine (2CdA), the immunomodulatory drug for multiple sclerosis; by mediating phosphorylation (activation) or phosphorolysis (deactivation) of 2CdA, respectively, these enzymes promote or prevent its accumulation in the cell, which leads to cell death. In particular, lymphocytes which present with a high intracellular dCK/NT5C2 ratio are more sensitive to 2CdA than other immune cells. We aim at determining if the expression of these enzymes and/or their activity differ in specific progenitor and mature immune cells and are influenced by cellular activation and/or exposure to 2CdA. Flow cytometry analysis showed no difference in dCK/NT5C2 ratio in progenitor and mature immune cells. 2CdA induced apoptosis in stimulated T and B cells and unstimulated B cells. dCK expression was enhanced by 2CdA at mRNA and protein levels in activated T cells and mRNA level in activated B cells. dCK activity, measured through an in-house luminescence release enzyme assay was higher in activated T and B cells, and such an increase was abrogated in activated B cells, but not T cells, upon exposure to 2CdA. These results reveal an important relationship between dCK activity and the effect of 2CdA on B and T cells, according to their activation status. Further study is warranted to evaluate whether dCK activity could, in the future, be a suitable predictive biomarker of lymphocyte response to 2CdA. Graphical Abstract "Image missing"


Sign in / Sign up

Export Citation Format

Share Document