scholarly journals Asthma Associated Cytokines Regulate the Expression of SARS-CoV-2 Receptor ACE2 in the Lung Tissue of Asthmatic Patients

2022 ◽  
Vol 12 ◽  
Author(s):  
Fatemeh Saheb Sharif-Askari ◽  
Swati Goel ◽  
Narjes Saheb Sharif-Askari ◽  
Shirin Hafezi ◽  
Saba Al Heialy ◽  
...  

It is still controversial whether chronic lung inflammation increases the risk for COVID-19. One of the risk factors for acquiring COVID-19 is the level of expression of SARS-CoV-2 entry receptors, ACE2 and TMPRSS2, in lung tissue. It is, however, not clear how lung tissue inflammation affects expression levels of these receptors. We hence aimed to determine the level of SARS-CoV-2 receptors in lung tissue of asthmatic relative to age, gender, and asthma severity, and to investigate the factors regulating that. Therefore, gene expression data sets of well-known asthmatic cohorts (SARP and U-BIOPRED) were used to evaluate the association of ACE2 and TMPRSS2 with age, gender of the asthmatic patients, and also the type of the underlying lung tissue inflammatory cytokines. Notably, ACE2 and to less extent TMPRSS2 expression were upregulated in the lung tissue of asthmatics compared to healthy controls. Although a differential expression of ACE2, but not TMPRSS2 was observed relative to age within the moderate and severe asthma groups, our data suggest that age may not be a key regulatory factor of its expression. The type of tissue inflammation, however, associated significantly with ACE2 and TMPRSS2 expression levels following adjusting with age, gender and oral corticosteroids use of the patient. Type I cytokine (IFN-γ), IL-8, and IL-19 were associated with increased expression, while Type II cytokines (IL-4 and IL-13) with lower expression of ACE2 in lung tissue (airway epithelium and/or lung biopsies) of moderate and severe asthmatic patients. Of note, IL-19 was associated with ACE2 expression while IL-17 was associated with TMPRSS2 expression in sputum of asthmatic subjects. In vitro treatment of bronchial fibroblasts with IL-17 and IL-19 cytokines confirmed the regulatory effect of these cytokines on SARS-CoV-2 entry receptors. Our results suggest that the type of inflammation may regulate ACE2 and TMPRSS2 expression in the lung tissue of asthmatics and may hence affect susceptibility to SARS-CoV-2 infection.

2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


2020 ◽  
Vol 21 (17) ◽  
pp. 6368
Author(s):  
Anaïs M. J. Møller ◽  
Jean-Marie Delaissé ◽  
Jacob B. Olesen ◽  
Luisa M. Canto ◽  
Silvia R. Rogatto ◽  
...  

It is well established that multinucleation is central for osteoclastic bone resorption. However, our knowledge on the mechanisms regulating how many nuclei an osteoclast will have is limited. The objective of this study was to investigate donor-related variations in the fusion potential of in vitro-generated osteoclasts. Therefore, CD14+ monocytes were isolated from 49 healthy female donors. Donor demographics were compared to the in vivo bone biomarker levels and their monocytes’ ability to differentiate into osteoclasts, showing that: (1) C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels increase with age, (2) the number of nuclei per osteoclast in vitro increases with age, and (3) there is a positive correlation between the number of nuclei per osteoclast in vitro and CTX levels in vivo. Furthermore, the expression levels of the gene encoding dendritic cell-specific transmembrane protein (DCSTAMP) of osteoclasts in vitro correlated positively with the number of nuclei per osteoclast, CTX levels in vivo, and donor age. Our results furthermore suggest that these changes in gene expression may be mediated through age-related changes in DNA methylation levels. We conclude that both intrinsic factors and age-induced increase in fusion potential of osteoclasts could be contributing factors for the enhanced bone resorption in vivo, possibly caused by increased expression levels of DCSTAMP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaolan Yang ◽  
Yongqiang Xiao ◽  
Chenjian Zhong ◽  
Futing Shu ◽  
Shichu Xiao ◽  
...  

Background: Inhibiting proliferation and inducing apoptosis of myofibroblasts is becoming one of the promising and effective ways to treat hypertrophic scar. ABT-263, as an orally bioavailable BCL-2 family inhibitor, has showed great antitumor characteristics by targeting tumor cell apoptosis. The objective of this study was to explore whether ABT-263 could target apoptosis of overactivated myofibroblasts in hypertrophic scar.Methods:In vivo, we used ABT-263 to treat scars in a rabbit ear scar model. Photographs and ultrasound examination were taken weekly, and scars were harvested on day 42 for further Masson trichrome staining. In vitro, the expression levels of BCL-2 family members, including prosurvival proteins, activators, and effectors, were detected systematically in hypertrophic scar tissues and adjacent normal skin tissues, as well as in human hypertrophic scar fibroblasts (HSFs) and human normal dermal fibroblasts (HFBs). The roles of ABT-263 in apoptosis and proliferation of HSFs and HFBs were determined by annexin V/PI assay, CCK-8 kit, and cell cycle analysis. Mitochondrial membrane potential was evaluated by JC-1 staining and the expression of type I/III collagen and α-SMA was measured by PCR, western blotting, and immunofluorescence staining. Furthermore, immunoprecipitation was performed to explore the potential mechanism.Results:In vivo, ABT-263 could significantly improve the scar appearance and collagen arrangement, decrease scar elevation index (SEI), and induce cell apoptosis. In vitro, the expression levels of BCL-2, BCL-XL, and BIM were significantly higher in scar tissues and HSFs than those in normal skin tissues and HFBs. ABT-263 selectively induced HSFs apoptosis by releasing BIM from binding with prosurvival proteins. Moreover, ABT-263 inhibited HSFs proliferation and reduced the expression of α-SMA and type I/III collagen in a concentration- and time- dependent manner.Conclusion: HSFs showed increased mitochondrial priming with higher level of proapoptotic activator BIM and were primed to death. ABT-263 showed great therapeutic ability in the treatment of hypertrophic scar by targeting HSFs.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Murilo Delgobo ◽  
Daniel AGB Mendes ◽  
Edgar Kozlova ◽  
Edroaldo Lummertz Rocha ◽  
Gabriela F Rodrigues-Luiz ◽  
...  

Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether Mycobacterium tuberculosis (Mtb) directly regulates myeloid commitment. We demonstrated that exposure to Mtb directs primary human CD34+ cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast, Mtb enhanced IL-6 responses by CD34+ cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloid IL-6/IL6R/CEBP gene module associated with disease severity. Furthermore, genetic and functional analysis revealed the IL6/IL6R/CEBP gene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggest Mtb co-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 92
Author(s):  
Matija Rijavec ◽  
Tomaž Krumpestar ◽  
Sabina Škrgat ◽  
Izidor Kern ◽  
Peter Korošec

Asthma is a common chronic disease, with different underlying inflammatory mechanisms. Identification of asthma endotypes, which reflect a variable response to different treatments, is important for more precise asthma management. T2 asthma is characterized by airway inflammation driven by T2 cytokines including interleukins IL-4, IL-5, and IL-13. This study aimed to determine whether induced sputum samples can be used for gene expression profiling of T2-high asthma classified by IL4, IL5, and IL13 expression. Induced sputum samples were obtained from 44 subjects, among them 36 asthmatic patients and eight controls, and mRNA expression levels of IL4, IL5, and IL13 were quantified by RT-qPCR. Overall, gene expression levels of IL4, IL5, and IL13 were significantly increased in asthmatic patients’ samples compared to controls and there was a high positive correlation between expressions of all three genes. T2 gene mean was calculated by combining the expression levels of all three genes (IL4, IL5, and IL13) and according to T2 gene mean expression in controls, we set a T2-high/T2-low cutoff value. Twenty-four (67%) asthmatic patients had T2-high endotype and those patients had significantly higher eosinophil blood and sputum counts. Furthermore, T2-high endotype was characterized as a more severe, difficult-to-treat asthma, and often uncontrolled despite the use of inhaled and/or oral corticosteroids. Therefore, the majority of those patients (15 [63%] of 24) needed adjunct biological therapy to control their asthma symptoms/exacerbations. In conclusion, we found that interleukins IL4, IL5, and IL13 transcripts could be effectively detected in sputum from asthmatic patients. Implementation of T2 gene mean can be used as sputum molecular biomarker to categorize patients into T2-high endotype, characterized by eosinophilia and severe, difficult-to-treat asthma, and often with a need for biological treatment.


2020 ◽  
Vol 21 (13) ◽  
pp. 4662 ◽  
Author(s):  
Elif Damla Arisan ◽  
Pinar Uysal-Onganer ◽  
Sigrun Lange

Peptidylarginine deiminases (PADs) are a family of calcium-regulated enzymes that are phylogenetically conserved and cause post-translational deimination/citrullination, contributing to protein moonlighting in health and disease. PADs are implicated in a range of inflammatory and autoimmune conditions, in the regulation of extracellular vesicle (EV) release, and their roles in infection and immunomodulation are known to some extent, including in viral infections. In the current study we describe putative roles for PADs in COVID-19, based on in silico analysis of BioProject transcriptome data (PRJNA615032 BioProject), including lung biopsies from healthy volunteers and SARS-CoV-2-infected patients, as well as SARS-CoV-2-infected, and mock human bronchial epithelial NHBE and adenocarcinoma alveolar basal epithelial A549 cell lines. In addition, BioProject Data PRJNA631753, analysing patients tissue biopsy data (n = 5), was utilised. We report a high individual variation observed for all PADI isozymes in the patients’ tissue biopsies, including lung, in response to SARS-CoV-2 infection, while PADI2 and PADI4 mRNA showed most variability in lung tissue specifically. The other tissues assessed were heart, kidney, marrow, bowel, jejunum, skin and fat, which all varied with respect to mRNA levels for the different PADI isozymes. In vitro lung epithelial and adenocarcinoma alveolar cell models revealed that PADI1, PADI2 and PADI4 mRNA levels were elevated, but PADI3 and PADI6 mRNA levels were reduced in SARS-CoV-2-infected NHBE cells. In A549 cells, PADI2 mRNA was elevated, PADI3 and PADI6 mRNA was downregulated, and no effect was observed on the PADI4 or PADI6 mRNA levels in infected cells, compared with control mock cells. Our findings indicate a link between PADI expression changes, including modulation of PADI2 and PADI4, particularly in lung tissue, in response to SARS-CoV-2 infection. PADI isozyme 1–6 expression in other organ biopsies also reveals putative links to COVID-19 symptoms, including vascular, cardiac and cutaneous responses, kidney injury and stroke. KEGG and GO pathway analysis furthermore identified links between PADs and inflammatory pathways, in particular between PAD4 and viral infections, as well as identifying links for PADs with a range of comorbidities. The analysis presented here highlights roles for PADs in-host responses to SARS-CoV-2, and their potential as therapeutic targets in COVID-19.


2019 ◽  
Author(s):  
Murilo Delgobo ◽  
Daniel A. G. B. Mendes ◽  
Edgar Kozlova ◽  
Edroaldo Lummertz Rocha ◽  
Gabriela F. Rodrigues-Luiz ◽  
...  

AbstractMonocyte counts are increased during human tuberculosis (TB) but it has not been determined whetherMycobacterium tuberculosis(Mtb) directly regulates myeloid commitment. We demonstrated that exposure toMtbdirects primary human CD34+cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast,Mtbenhanced IL-6 responses by CD34+cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloidIL-6/IL6R/CEBPgene module associated with disease severity. Furthermore, genetic and functional analysis revealed theIL6/IL6R/CEBPgene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggestMtbco-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.


2019 ◽  
Author(s):  
Jingyi Zhou ◽  
Shuaihui Liu ◽  
Luying Guo ◽  
Rending Wang ◽  
Jianghua Chen ◽  
...  

Abstract Background: Renal fibrosis (RF) results in renal function impairment and eventually kidney failure. We found that N-methyl-D-aspartate receptor (NMDAR) played an important role during RF. However, its mechanism of action is yet to be deciphered. Methods: RF was induced in vivo by unilateral ureteral obstruction (UUO) using 8-week-old C57BL/6 mice. The expression levels of the NMDAR’s functional subunit, NR1, was downregulated using lentiviral vector-mediated shRNA interference. Histological changes were observed using Masson’s trichrome staining. Expression of NR1, fibrotic markers (α-smooth muscle actin (α-SMA), type I collagen (COL1A4), S100A4 and fibronectin), and EMT markers (snail and E-cadherin) were measured using immunohistochemistry and western blot analysis. RF was induced after TGF-β-treatment in HK-2 cells in vitro. NMDAR antagonist MK-801 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) antagonist KN-93 were included in this study for pathway determination. Expression of NR1, total and phosphorylation of CaMKII (p-CaMKII), total and p-ERK were measured using western blot and immunofluorescent assays. Results from in vitro studies were confirmed using in vivo studies for NR1, CaMKII and ERK expression levels. In addition, ischemia-reperfusion injury (IRI) mouse model was used to determine whether oral NMDAR inhibitor dextromethorphan (DXM) could inhibit chronic fibrosis. Results: Increased NR1 expression was observed in both UUO-injured kidneys and TGF-β-treated tubular cells. NR1 knockdown and MK801 administration downregulated CaMKII/ERK activation. In vitro administered CaMKII antagonist KN93 reduced ERK phosphorylation and was not affected by NR1 expression levels. DXM protected IRI-injured kidneys from atrophy and fibrosis. Conclusions: NMDAR participates in renal fibrogenesis by activating the CaMKII/ERK pathway. NMDAR could be a potential therapeutic target for renal fibrosis.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


Sign in / Sign up

Export Citation Format

Share Document