scholarly journals Mesenchymal Stem Cells Overexpressing ACE2 Favorably Ameliorate LPS-Induced Inflammatory Injury in Mammary Epithelial Cells

2022 ◽  
Vol 12 ◽  
Author(s):  
Shuping Yan ◽  
Pingsheng Ye ◽  
Muhammad Tahir Aleem ◽  
Xi Chen ◽  
Nana Xie ◽  
...  

Mesenchymal stem cells (MSCs) are capable of homing injury sites to exert anti-inflammatory as well as anti-damage effects and can be used as a vehicle for gene therapy. Angiotensin-converting enzyme 2 (ACE2) plays an important role in numerous inflammatory diseases, but fewer studies have been reported in animal mastitis. We hypothesized that MSCs overexpressing ACE2 is more effective in ameliorating lipopolysaccharide (LPS)-induced inflammatory injury in mammary epithelial cells compared to MSCs alone. The results showed that MSC-ACE2 inhibited the LPS induction by upregulation of TNF-α, IL-Iβ, IL-6, and iNOS mRNA expression levels in EpH4-Ev cells compared with MSCs. Furthermore, results showed that both MSC and MSC-ACE2 were significantly activated IL-10/STAT3/SOCS3 signaling pathway as well as inhibited TLR4/NF-κB and MAPK signaling pathways, but MSC-ACE2 had more significant effects. Meanwhile, MSC-ACE2 promoted the expression of proliferation-associated proteins and inhibited the expression of the apoptosis-associated proteins in EpH4-Ev cells. In addition, MSC and MSC-ACE2 reversed the LPS-induced downregulation expression levels of the tight junction proteins in mammary epithelial cells, indicating that both MSC as well as MSC-ACE2 could promote blood-milk barrier repair, and MSC-ACE2 was more effective. These results suggested that MSCs overexpressing ACE2 were more anti-inflammatory as well as anti-injurious action into LPS-induced inflammatory injury in the EpH4-Ev cells. Thus, MSCs overexpressing ACE2 is expected to serve as a potential strategy for mastitis treatment.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Annika Kengelbach-Weigand ◽  
Kereshmeh Tasbihi ◽  
Pamela L. Strissel ◽  
Rafael Schmid ◽  
Jasmin Monteiro Marques ◽  
...  

2018 ◽  
Vol 34 (10) ◽  
pp. 1465-1469 ◽  
Author(s):  
Fabio Mastrogiovanni ◽  
Roberta Bernini ◽  
Loredana Basiricò ◽  
Umberto Bernabucci ◽  
Margherita Campo ◽  
...  

2008 ◽  
Vol 75 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Lisa G Riley ◽  
Peter C Wynn ◽  
Peter Williamson ◽  
Paul A Sheehy

Folding variants of α-lactalbumin (α-la) are known to induce cell death in a number of cell types, including mammary epithelial cells (MEC). The native conformation of α-la however has not been observed to exhibit this biological activity. Here we report that native bovine α-la reduced the viability of primary bovine mammary epithelial cells (BMEC) and induced caspase activity in mammospheres, which are alveolar-like structures formed by culturing primary BMEC on extracellular matrix in the presence of lactogenic hormones. These observations suggest a possible role for bovine α-la in involution and/or maintaining the luminal space in mammary alveoli during lactation. In addition, co-incubation of bovine α-la in an in-vitro mammosphere model resulted in decreased β-casein mRNA expression and increased αs1- and κ-casein mRNA expression. This differential effect on casein expression levels is unusual and raises the possibility of manipulating expression levels of individual caseins to alter dairy processing properties. Manipulation of α-la levels could be further investigated for its potential to enhance milk protein expression and/or improve lactational persistency by influencing the balance between proliferation and apoptosis of BMEC, which has a major influence on the milk-producing capacity of the mammary gland.


Sign in / Sign up

Export Citation Format

Share Document