scholarly journals Leptin Promotes Greater Ki67 Expression in CD4+ T Cells From Obese Compared to Lean Persons Living With HIV

2022 ◽  
Vol 12 ◽  
Author(s):  
Hubaida Fuseini ◽  
Rita Smith ◽  
Cindy H. Nochowicz ◽  
Joshua D. Simmons ◽  
LaToya Hannah ◽  
...  

While antiretroviral therapy (ART) has proven effective in suppressing viremia and disease progression among people living with human immunodeficiency virus (HIV; PLWH), suboptimal CD4+ T cell reconstitution remains a major obstacle in nearly 30% of ART-treated individuals. Epidemiological studies demonstrate that obesity, or a body mass index (BMI) ≥ 30 kg/m2, is positively correlated with greater CD4+ T cell recovery in PLWH on ART. Leptin is a known immunomodulator that is produced in proportion to fat mass and is increased in obese individuals, including PLWH. We hypothesized that CD4+ T cells from obese PLWH have increased cell proliferation and cytokine production compared to cells from lean PLWH, potentially modulated by differential effects of leptin signaling. To test this hypothesis, peripheral blood mononuclear cells from obese and lean PLWH with long-term virologic suppression on the same ART regimen were pretreated with recombinant leptin and then stimulated with anti-CD3/CD28 or PMA/ionomycin to measure Ki67 expression, leptin receptor (LepR) surface expression and cytokine production. In the absence of leptin, Ki67 expression and IL-17A production were significantly higher in CD4+ T cells from obese compared to lean PLWH. However, LepR expression was significantly lower on CD4+ T cells from obese compared to lean PLWH. After leptin treatment, Ki67 expression was significantly increased in CD4+ T cells from obese PLWH compared to the lean participants. Leptin also increased IL-17A production in CD4+ T cells from obese healthy controls. In contrast, leptin decreased IL-17A production in CD4+ T cells from both obese and lean PLWH. Combined, these results demonstrate that obesity is associated with greater CD4+ T cell proliferation among PLWH, and that higher circulating leptin levels in obesity may contribute to improved CD4+ T reconstitution in PLWH initiating ART.

2007 ◽  
Vol 75 (4) ◽  
pp. 1730-1737 ◽  
Author(s):  
Ilaria Peluso ◽  
Daniele Fina ◽  
Roberta Caruso ◽  
Carmine Stolfi ◽  
Flavio Caprioli ◽  
...  

ABSTRACT Recent studies have shown that probiotics are beneficial in T-cell-mediated inflammatory diseases. The molecular mechanism by which probiotics work remains elusive, but accumulating evidence indicates that probiotics can modulate immune cell responses. Since T cells express receptors for bacterial products or components, we examined whether different strains of lactobacilli directly regulate the functions of human T cells. CD4+ T cells were isolated from blood and intestinal lamina propria (LP) of normal individuals and patients with inflammatory bowel disease (IBD). Mononuclear cells were also isolated from Peyer's patches. Cells were activated with anti-CD3/CD2/CD28 in the presence or absence of Lactobacillus paracasei subsp. paracasei B21060, L. paracasei subsp. paracasei F19, or L. casei subsp. casei DG. Cell proliferation and death, Foxp3, intracellular pH, and cytokine production were evaluated by flow cytometry. We showed that L. paracasei subsp. paracasei B21060 but neither L. paracasei subsp. paracasei F19 nor L. casei subsp. casei DG inhibited blood CD4+ T-cell growth. This effect was associated with no change in cell survival, expression of Foxp3, or production of gamma interferon, interleukin-4 (IL-4), IL-5, and IL-10. L. paracasei subsp. paracasei B21060-mediated blockade of CD4+ T-cell proliferation required a viable bacterium and was associated with decreased MCT-1 expression and low intracellular pH. L. paracasei subsp. paracasei B21060 also inhibited the growth of Peyer's patch mononuclear cells, normal lymphocytes, and IBD CD4+ LP lymphocytes without affecting cytokine production. The data show that L. paracasei subsp. paracasei B21060 blocks T-cell growth, thus suggesting a mechanism by which these probiotics could interfere with T-cell-driven immune responses.


Author(s):  
M E Jacobs ◽  
J N Pouw ◽  
M A Olde Nordkamp ◽  
T R D J Radstake ◽  
E F A Leijten ◽  
...  

Abstract Background Signals at the contact site of antigen-presenting cells (APCs) and T cells help orchestrate the adaptive immune response. CD155 on APCs can interact with the stimulatory receptor DNAM1 or inhibitory receptor TIGIT on T cells. The CD155/DNAM1/TIGIT axis is under extensive investigation as immunotherapy target in inflammatory diseases including cancer, chronic infection and autoimmune diseases. We investigated a possible role for CD155/DNAM1/TIGIT signaling in psoriatic disease. Methods By flow cytometry we analyzed peripheral blood mononuclear cells of patients with psoriasis (n=20) or psoriatic arthritis (n=21), and healthy individuals (n=7). We measured CD155, TIGIT and DNAM1 expression on leukocyte subsets and compared activation-induced cytokine production between CD155-positive and -negative APCs. We assessed the effects of TIGIT and DNAM1 blockade on T cell activation, and related the expression of CD155/DNAM1/TIGIT axis molecules to measures of disease activity. Results High CD155 expression associates with TNF production in myeloid and plasmacytoid dendritic cells (DC). In CD1c+ myeloid DC, activation-induced CD155 expression associates with increased HLA-DR expression. CD8 T cells - but not CD4 T cells - express high levels of TIGIT. DNAM1 blockade decreases T cell pro-inflammatory cytokine production, while TIGIT blockade increased T cell proliferation. Finally, T cell TIGIT expression shows an inverse correlation with inflammation biomarkers in psoriatic disease. Conclusion CD155 is increased on pro-inflammatory APCs, while the receptors DNAM1 and TIGIT expressed on T cells balance the inflammatory response by T cells. In psoriatic disease, low TIGIT expression on T cells is associated with systemic inflammation.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4501-4511 ◽  
Author(s):  
Willemijn Hobo ◽  
Frans Maas ◽  
Niken Adisty ◽  
Theo de Witte ◽  
Nicolaas Schaap ◽  
...  

Tumor relapse after human leukocyte antigen–matched allogeneic stem cell transplantation (SCT) remains a serious problem, despite the long-term presence of minor histocompatibility antigen (MiHA)–specific memory T cells. Dendritic cell (DC)–based vaccination boosting MiHA-specific T-cell immunity is an appealing strategy to prevent or counteract tumor recurrence, but improvement is necessary to increase the clinical benefit. Here, we investigated whether knockdown of programmed death ligand 1 (PD-L1) and PD-L2 on monocyte-derived DCs results in improved T-cell activation. Electroporation of single siRNA sequences into immature DCs resulted in efficient, specific, and long-lasting knockdown of PD-L1 and PD-L2 expression. PD-L knockdown DCs strongly augmented interferon-γ and interleukin-2 production by stimulated T cells in an allogeneic mixed lymphocyte reaction, whereas no effect was observed on T-cell proliferation. Moreover, we demonstrated that PD-L gene silencing, especially combined PD-L1 and PD-L2 knockdown, resulted in improved proliferation and cytokine production of keyhole limpet hemocyanin–specific CD4+ T cells. Most importantly, PD-L knockdown DCs showed superior potential to expand MiHA-specific CD8+ effector and memory T cells from leukemia patients early after donor lymphocyte infusion and later during relapse. These data demonstrate that PD-L siRNA electroporated DCs are highly effective in enhancing T-cell proliferation and cytokine production, and are therefore attractive cells for improving the efficacy of DC vaccines in cancer patients.


1995 ◽  
Vol 182 (6) ◽  
pp. 1785-1792 ◽  
Author(s):  
P Jeannin ◽  
Y Delneste ◽  
S Lecoanet-Henchoz ◽  
J F Gauchat ◽  
P Life ◽  
...  

N-Acetyl-L-cysteine (NAC) is an antioxidant precursor of intracellular glutathione (GSH), usually given in human as a mucolytic agent. In vitro, NAC and GSH have been shown to act on T cells by increasing interleukin (IL) 2 production, synthesis and turnover of IL-2 receptors, proliferation, cytotoxic properties, and resistance to apoptosis. We report here that NAC and GSH decrease in a dose-dependent manner human IL-4 production by stimulated peripheral blood T cells and by T helper (Th) 0- and Th2-like T cell clones. This effect was associated with a decrease in IL-4 messenger RNA transcription. In contrast, NAC and GSH had no effect on interferon gamma and increased IL-2 production and T cell proliferation. A functional consequence was the capacity of NAC and GSH to selectively decrease in a dose-dependent manner IL-4-induced immunoglobulin (Ig) E and IgG4 production by human peripheral blood mononuclear cells. Interestingly, NAC and GSH also acted directly on purified tonsillar B cells by decreasing the mature epsilon messenger RNA, hence decreasing IgE production. In contrast, IgA and IgM production were not affected. At the same time, B cell proliferation was increased in a dose-dependent manner. Not all antioxidants tested but only SH-bearing molecules mimicked these properties. Finally, when given orally to mice, NAC decreased both IgE and IgG1 antibody responses to ovalbumin. These results demonstrate that NAC, GSH, and other thiols may control the production of both the Th2-derived cytokine IL-4 and IL-4-induced Ig in vitro and in vivo.


2021 ◽  
Vol 11 ◽  
Author(s):  
Linda Voss ◽  
Karina Guttek ◽  
Annika Reddig ◽  
Annegret Reinhold ◽  
Martin Voss ◽  
...  

Repositioning of approved drugs for identifying new therapeutic purposes is an alternative, time and cost saving strategy to classical drug development. Here, we screened a library of 786 FDA-approved drugs to find compounds, which can potentially be repurposed for treatment of T cell-mediated autoimmune diseases. Investigating the effect of these diverse substances on mitogen-stimulated proliferation of both, freshly stimulated and pre-activated (48 h) peripheral blood mononuclear cells (PBMCs), we discovered Adefovir Dipivoxil (ADV) as very potent compound, which inhibits T cell proliferation in a nanomolar range. We further analyzed the influence of ADV on proliferation, activation, cytokine production, viability and apoptosis of freshly stimulated as well as pre-activated human T cells stimulated with anti-CD3/CD28 antibodies. We observed that ADV was capable of suppressing the proliferation in both T cell stimulation systems in a dose-dependent manner (50% inhibition [IC50]: 63.12 and 364.8 nM for freshly stimulated T cells and pre-activated T cells, respectively). Moreover, the drug impaired T cell activation and inhibited Th1 (IFN-γ), Th2 (IL-5), and Th17 (IL-17) cytokine production dose-dependently. Furthermore, ADV treatment induced DNA double-strand breaks (γH2AX foci expression), which led to an increase of p53-phospho-Ser15 expression. In response to DNA damage p21 and PUMA are transactivated by p53. Subsequently, this caused cell cycle arrest at G0/G1 phase and activation of the intrinsic apoptosis pathway. Our results indicate that ADV could be a new potential candidate for treatment of T cell-mediated autoimmune diseases. Prospective studies should be performed to verify this possible therapeutic application of ADV for such disorders.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 4073-4073 ◽  
Author(s):  
Koji Inamori ◽  
Yosuke Togashi ◽  
Hideaki Bando ◽  
Yuichiro Tsukada ◽  
Ayako Suzuki ◽  
...  

4073 Background: In VOLTAGE-A1, after 5 cycles of nivolumab (240 mg q2 weeks) plus radical surgery following chemoradiotherapy (CRT; 50.4 Gy with capecitabine 1,650 mg/m2), a major pathologic response is observed in 38% (AJCC tumor regression grade 0-1) of 37 patients with microsatellite-stable locally advanced primary rectal cancer. Here, biomarkers for predicting the efficacy of this treatment were investigated. Methods: Serial tumor biopsies and blood collections were performed at 4 time points; before CRT, after CRT, after 3 cycles of nivolumab, and before surgery. Tumor-infiltrating lymphocytes (TILs) and DNA/RNA were extracted from tumor samples, and peripheral blood mononuclear cells (PBMCs) were extracted from blood samples. We analyzed the immune status of the patients by flow cytometry using the collected TILs and PBMCs. Whole exome and RNA sequencing analyses were conducted using the extracted DNA and RNA, respectively. The PD-L1 status of tumor samples was also evaluated by in vitro diagnostic immunohistochemistry staining. Results: Among the 24 patients whose samples were serially collected, 11 (46%) were AJCC grade 0-1 and 13 were 2-3. Before CRT, effector regulatory T (eTreg) cells in TILs were higher in patients with AJCC grade 2-3, and both the CD8+ T cell/eTreg cell ratio in TILs and PD-L1-positive tumor cells (≥1%) were higher in patients with AJCC grade 0-1 (p = 0.047, p = 0.083, respectively). Ki67 expression by CD8+ T cells in TILs was higher before CRT in patients with AJCC grade 0-1 (p = 0.037) and increased after CRT in all patients. Patients with consensus molecular subtype (CMS) 1 and CMS3 achieved AJCC grade 0-1 at rates of 100% (2/2) and 60% (4/6), respectively. In contrast, patients with CMS2 and CMS4 achieved AJCC grade 0-1 at rates of 43% (3/7) and 29% (2/7), respectively. The tumor mutation burden of pre-CRT samples was significantly higher in patients with AJCC grade 0-1 (median 1.45/MB) than in patients with AJCC grade 2-3 (0.84/MB) (p = 0.016). Conclusions: A higher CD8+ T cell/eTreg cell ratio, PD-L1-positive, Ki67 expression by CD8+ T cells in TILs, CMS1 or 3, and higher tumor mutation burden are good predictors of the efficacy of the sequential combination of CRT and nivolumab. Further results will be reported in the meeting. Clinical trial information: NCT02948348 .


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Xiaozheng Xu ◽  
Bowen Hou ◽  
Amitkumar Fulzele ◽  
Takeya Masubuchi ◽  
Yunlong Zhao ◽  
...  

Blockade antibodies of the immunoinhibitory receptor PD-1 can stimulate the anti-tumor activity of T cells, but clinical benefit is limited to a fraction of patients. Evidence suggests that BTLA, a receptor structurally related to PD-1, may contribute to resistance to PD-1 targeted therapy, but how BTLA and PD-1 differ in their mechanisms is debated. Here, we compared the abilities of BTLA and PD-1 to recruit effector molecules and to regulate T cell signaling. While PD-1 selectively recruited SHP2 over the stronger phosphatase SHP1, BTLA preferentially recruited SHP1 to more efficiently suppress T cell signaling. Contrary to the dominant view that PD-1 and BTLA signal exclusively through SHP1/2, we found that in SHP1/2 double-deficient primary T cells, PD-1 and BTLA still potently inhibited cell proliferation and cytokine production, albeit more transiently than in wild type T cells. Thus, PD-1 and BTLA can suppress T cell signaling through a mechanism independent of both SHP1 and SHP2.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2659-2659
Author(s):  
Edna Ku ◽  
JianXiang Zou ◽  
Fanqi Bai ◽  
Jeffrey S. Painter ◽  
Alan F. List ◽  
...  

Abstract Background: The myelodysplastic syndromes (MDS) comprise a spectrum of stem cell malignancies with natural histories that vary from indolent mild cytopenias to rapid transformation to acute leukemia. MDS patients have impaired T cell antigen-induced proliferation and reduced T helper-1 (Th-1) cytokine production. Lenalidomide, an immuno-modulatory drug structurally-related to thalidomide, is FDA-approved for the treatment of MDS with chromosome 5q deletion; however, its mechanism of action is not fully characterized. We hypothesize that immune modulation by lenalidomide will be an effective adjunct to vaccine therapy for patients with MDS. Methods: The immunoregulatory effects of lenalidomide were investigated both in vitro and in vivo. Peripheral blood mononuclear cells (PBMCs) from MDS patients and normal controls were stimulated with anti-CD3 cross-linking, allogeneic dendritic cells (allo-DCs), autologous dendritic cells (auto-DCs), and patient-derived autologous bone marrow mononuclear cells (BM-MNC) as antigen sources in the presence of DMSO (vehicle control) and lenalidomide [0.625 μM to 40 μM]. Proliferation of specific CD4+ and CD8+ T cell populations was assessed by Brdu incorporation and intracellular cytokine production by flow cytometry. Preliminary studies were performed to examine the combined effects of the GMCSF/K562 “bystander” vaccine (gift of Dr. I. Borrello, Johns Hopkins University) and lenalidomide on antigen-induced T cell proliferation in PBMC from both normal donors and MDS patients. Results: Lenalidomide augmented a Th-1-biased cytokine (IFN-γ, TNF-α and IL-2) response from normal donors (n=5) and MDS patients (n=5). The Th-1-biased increase in cytokine production accompanied erythroid response in MDS patients treated with 10 mg of lenalidomide for 16 weeks (n=4 responders and 3 non-responders) (List et al, NEJM2005;351:549). Augmentation of antigen-dependent proliferation accompanied cytokine responses both in vitro and in vivo. Next, we examined the effects of lenalidomide on in vitro response to autologous and allogeneic antigens. We found that pre-treatment T cell proliferation in response to auto-DC priming was not distinguishable from background. However, proliferation in response to auto-BM-MNCs used as a source of autologous tumor antigens was significantly increased by lenalidomide in CD3+, CD4+, and CD8+ T cell populations (P=0.002, 0.04, and 0.04, respectively). Proliferation after allo-DC exposure was also significantly enhanced by lenalidomide treatment (P<0.05). GMCSF/K562 “bystander” vaccine-increased proliferation to allo-DC antigens in CD4+ and CD8+ T cells without exposure to lenalidomide (n=4) (167% increase vs. 245% increase, respectively). When allo-DC-stimulated PBMCs were treated with lenalidomide alone, CD4+ and CD8+ proliferation was increased by 47% and 39% respectively. The combination of lenalidomide and the GMCSF/K562 vaccine further enhanced T cell proliferation to allo-DC stimulation (325% and 397% for CD4+ and CD8+ populations, respectively). Conclusion: Lenalidomide significantly augments T cell immune function in MDS, and potentiates immune response to the GMCSF/K562 “bystander” vaccine. We conclude that lenalidomide represents an attractive adjunct to vaccines for clinical investigation in MDS.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 277-277
Author(s):  
Hiroki Kawano ◽  
Yoshio Katayama ◽  
Kentaro Minagawa ◽  
Manabu Shimoyama ◽  
Mark Henkemeyer ◽  
...  

Abstract Abstract 277 Eph is the largest known family of receptor tyrosine kinases, and bind to a cell surface-associated ligand, ephrin on neighboring cells upon direct cell-cell contact. The ensuing bidirectional signals have been recognized as a major form of contact-dependent cell communications, such as cell attraction and repulsion to control accurate spatial and temporal patterning in the development of the central nervous system. EphBs, EphB6 in particular, are expressed in T cells and its specific ligand, ephrin-B2 has been shown to act as a costimulatory molecule for the T cell receptor (TCR)-mediated cell proliferation. Recently, another remarkable feature of ephrins, a concentration-dependent transition from promotion to inhibition in axon growth has emerged in ephrin-As. Thus, we postulated that this type of ligand concentration dependent functional transition would be suitable for the delicate tuning of immune responses to avoid reckless drive. To figure this out, we carefully evaluated the costimulatory effects of ephrin-Bs by using murine primary T cells. Interestingly, low doses of solid phase ephrin-B1 as well as ephrin-B2 (at up to 5μ g/ml) costimulated, to the comparable level with anti-CD28, T cell proliferation induced by suboptimal concentration of immobilized anti-CD3 antibody, but high concentrations of ephrin-B1/B2 inhibited the TCR-mediated proliferation significantly (by approximately 70% reduction from the baseline at 20μ g/ml). The similar concentration-dependent transition from coactivation to inhibition was also observed under the optimal CD3 stimulation. The concentration-dependent biphasic effects, positively at low concentration and negatively at high concentration, by ephrin-B1/B2 in T cell activation were confirmed in the cytokine production such as TNF-α, IL-2, and IFN-γ. In contrast, ephrin-B3 showed steadily increasing stimulatory effect even in higher concentrations in proliferation and cytokine production. We speculated that these unique modulations were partly mediated by EphB6 because EphB6 transfected in HEK293T cells has been shown to exert biphasic effects in cell adhesion and migration in response to different concentrations of ephrin-B2. T cell derived from Ephb6 -/- mice showed decreased CD3-stimulated cell proliferation as reported previously. However, the unique comodulatory pattern by each ephrin-B was virtually preserved in Ephb6 -/- T cells. Since the functions of Eph family could be redundant, we further investigated by generating multiple EphB knockout mice lacking four genes, Ephb1, Ephb2, Ephb3 and Ephb6. Surprisingly, no further alteration was observed in T cells from the quadruple knockout mice compared to the Ephb6 single deficiency. We also confirmed that EphA4, an exception in EphA receptor family which binds ephrin-Bs, was not expressed in T cells by RT-PCR. Taken together with the fact that EphB5 does not exist in mammals, the unique comodification by ephrin-Bs might be regulated by EphB4. Next, we examined the cross-talk of EphB forward signaling with TCR pathway. The inhibitor of p38MAPK and p44/42MAPK significantly reduced the TCR-mediated proliferation, but did conserve the concentration-dependent effects of ephrin-B1/B2, suggesting the interference with EphB signaling in TCR signal transduction at the upstream of MAPKs which are important for cell growth and survival. Immuno-blot analyses revealed that high concentrations of ephrin-B1/B2, but not ephrin-B3, clearly inhibited the anti-CD3 induced phosphorylation of Lck and its downstream signaling molecules such as ZAP70, c-Raf, MEK1/2, Erk, and Akt, although the phosphorylation of CD3ζ was not inhibited by high concentrations of any ephrin-Bs. These data suggest that Eph signaling upon stimulation by high concentrations of ephrin-B1/B2 may engage in negative feedback to TCR signals via Lck. The present studies demonstrate that TCR-mediated primary T cell activation may be highly governed by EphB/ephrin-B axis with a complexity determined by the combination as well as the concentration of different ephrin-Bs expressed in immunological microenvironments. EphB-involved in negative feedback of T cell activation could be a novel therapeutic target to inhibit the most proximal TCR signaling molecule, Lck. The generation of strong signaling molecule which mimics ephrin-B1/B2 would be an effective strategy to control T cell mediated immune disorders. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document