scholarly journals Monolaurin Confers a Protective Effect Against Porcine Epidemic Diarrhea Virus Infection in Piglets by Regulating the Interferon Pathway

2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Dan Yi ◽  
Changzheng Ji ◽  
Tao Wu ◽  
Manli Wang ◽  
...  

Porcine epidemic diarrhea virus (PEDV) has reemerged as the main pathogen of piglets due to its high mutation feature. Monolaurin (ML) is a natural compound with a wide range of antibacterial and antiviral activities. However, the role of ML in PEDV infection is still unknown. This study aimed to evaluate the effect of ML on the growth performance, intestinal function, virus replication and cytokine response in piglets infected with PEDV, and to reveal the mechanism through proteomics analysis. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 days before PEDV infection. Results showed that although there was no significant effect on the growth performance of piglets, ML administration alleviated the diarrhea caused by PEDV infection. ML administration promoted the recovery of intestinal villi, thereby improving intestinal function. Meanwhile, PEDV replication was significantly inhibited, and PEDV-induced expression of IL-6 and IL-8 were decreased with ML administration. Proteomics analyses showed that 38 proteins were differentially expressed between PEDV and ML+PEDV groups and were significantly enriched in the interferon-related pathways. This suggests ML could promote the restoration of homeostasis by regulating the interferon pathway. Overall, the present study demonstrated ML could confer a protective effect against PEDV infection in piglets and may be developed as a drug or feed additive to prevent and control PEDV disease.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P < 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


2019 ◽  
Vol 82 (4) ◽  
pp. 702-713 ◽  
Author(s):  
Hyo-Moon Cho ◽  
Thi-Kim-Quy Ha ◽  
Lan-Huong Dang ◽  
Ha-Thanh-Tung Pham ◽  
Van-On Tran ◽  
...  

2017 ◽  
Vol 95 (1) ◽  
pp. 173-181 ◽  
Author(s):  
S. M. Curry ◽  
K. A. Gibson ◽  
E. R. Burrough ◽  
K. J. Schwartz ◽  
K. J. Yoon ◽  
...  

Abstract Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are both members of the family Coronaviridae which induce clinical signs of diarrhea, dehydration, and in some circumstances, mortality. Most research has been focused on isolation, genome sequencing, pathogenicity, and virulence of these viruses, but there is little information on long-term growth performance and tissue accretion of pigs inoculated with PEDV or PDCoV. Therefore, our objective was to determine the effect of PEDV or PDCoV infection on growth performance and tissue accretion over 42 d following inoculation. A total of 75 Choice Genetics Large White Pureline barrows and gilts (BW = 10.81 ± 0.81 kg) at approximately 2 wk post-wean and naïve for PEDV and PDCoV were selected. Pigs were allotted based on BW and sex, stratified across 3 treatments with 8 pens per treatment. Treatments were: 1) Control (n = 8); 2) PEDV inoculated (n = 8); and 3) PDCoV inoculated (n = 8). On day post inoculation (dpi) 2, 5, 7, and 14 pigs were euthanized for tissue collection and analyses from these tissues are discussed elsewhere. Pen feed intake and BW were recorded on dpi 2, 5, 7, and weekly thereafter until dpi 42. On 1 designated pig per pen, initial and final body composition was determined using dual-energy X-ray absorptiometry (DXA) and tissue accretion rates were calculated over 6 wk test period. Peak PEDV infection was noted at 3 dpi compared with 4 dpi for PDCoV pigs as determined by fecal swab quantitative real-time PCR (RT-PCR). Control pigs remained negative for PEDV and PDCoV throughout the experiment. Overall, Control and PDCoV pigs did not differ in ADG, ADFI or G:F (P > 0.05). Compared to Control and PDCoV pigs, the overall 42 d ADFI was reduced in the challenged PEDV pigs (P < 0.05) by 19 and 27%, respectively. PEDV did not significantly reduce the overall ADG or G:F compared with Control and PDCoV pigs; however, the biggest reduction in ADG and ADFI for PEDV pigs was within 14 dpi compared to the Control pigs (P < 0.05). Whole body tissue accretion was altered due to PED, with fat, lean, protein, and bone mineral accretion reductions by 24, 20, 21, and 42%, respectively (P < 0.05) compared with Control pigs. Overall, nursery pig performance was greatly impacted by PEDV challenge. Surprisingly, the PDCoV challenge did not negatively influence nursery pig performance. This study provides further insight into the longitudinal impact swine enteric coronaviruses have on growing pigs.


2013 ◽  
Vol 94 (7) ◽  
pp. 1554-1567 ◽  
Author(s):  
Yaling Xing ◽  
Jianfei Chen ◽  
Jian Tu ◽  
Bailing Zhang ◽  
Xiaojuan Chen ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is the cause of an economically important swine disease. Previous studies suggested that PEDV does not elicit a robust IFN response, but the mechanism(s) used to evade or block this innate immune response was not known. In this study, we found that PEDV infection blocked synthetic dsRNA-induced IFN-β production by interfering with the activation of interferon regulatory factor 3 (IRF3). We identified PEDV replicase encoded papain-like protease 2 (PLP2) as an IFN antagonist that depends on catalytic activity for its function. We show that levels of ubiquitinated proteins are reduced during PEDV infection and that PEDV PLP2 has deubiquitinase (DUB) activity that recognizes and processes both K-48 and K-63 linked polyubiquitin chains. Furthermore, we found that PEDV PLP2 strongly inhibits RIG-I- and STING-activated IFN expression and that PEDV PLP2 can be co-immunoprecipitated with and deubiquitinates RIG-I and STING, the key components of the signalling pathway for IFN expression. These results show that PEDV infection suppresses production of IFN-β and provides evidence indicating that the PEDV papain-like protease 2 acts as a viral DUB to interfere with the RIG-I- and STING-mediated signalling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qian Zhang ◽  
Tao Wu ◽  
Siyuan Li ◽  
Yuxuan Meng ◽  
Zihan Tan ◽  
...  

Porcine epidemic diarrhea virus (PEDV) has reemerged throughout the world in the past ten years and caused huge economic losses to the swine industry. No drugs are available to prevent or treat PEDV infection in piglets. Zinc oxide (ZnO) has been shown to reduce diarrhea. However, little is known about its role in PEDV infection. In this study, twenty-four 7-day-old piglets were randomly divided into three treatment groups: control, PEDV, and ZnO+PEDV. Piglets in the ZnO+PEDV group were orally administered with 100 mg/kg·BW ZnO and then inoculated PEDV at a dose of 104.5 TCID50 (50% tissue culture infectious dose) per pig. Growth performance, histologic lesions, viral load, indicators of intestinal damage, inflammation, and oxidative stress were recorded or detected to determine the effect of ZnO on PEDV infection. And the underlying mechanisms were revealed by microarray and proteomic analyses. Results showed that ZnO administration mitigated diarrhea and the reduction of average daily weight gain induced by PEDV infection. ZnO could inhibit PEDV replication in the small intestine and colon. Both villus height and crypt depth were affected by PEDV infection in the duodenum and jejunum, which could be rescued by ZnO administration. Moreover, the activity of catalase was decreased both in plasma and intestine after PEDV infection, while increased in the intestine by ZnO administration. PEDV infection also significantly increased the concentration of H2O2 in jejunal and ileum and decreased the activity of total superoxide dismutase and glutathione peroxidase in plasma, whereas ZnO administration obviously increased the activity of total superoxide dismutase and decreased the concentration of H2O2 in the ileum. The concentrations of IL-1β, IL-6, and IL-8 in the plasma were all decreased upon ZnO administration. A large number of differentially expressed genes and proteins were identified in the ileum among the three groups by microarray and proteomic analyses. Gene Ontology and Reactome pathway analyses indicated that neutrophil degranulation and nutrient metabolism were the main biological process and pathways in both PEDV infection and ZnO administration. Overall, ZnO administration could improve growth performance, intestinal redox status, morphology, and function and reduce diarrhea in PEDV-infected piglets; ZnO could exert antiviral and anti-inflammatory effects on PEDV-infected piglets probably through regulating neutrophil degranulation. Our findings have important implications in piglet and infant nutrition.


2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Jordan T Gebhardt ◽  
Katelyn A Thomson ◽  
Jason C Woodworth ◽  
Steve S Dritz ◽  
Michael D Tokach ◽  
...  

Abstract An experiment was conducted to evaluate the effect of dietary medium-chain fatty acid (MCFA) addition on nursery pig growth performance, fecal microbial composition, and mitigation of porcine epidemic diarrhea virus (PEDV) following storage. A total of 360 pigs (DNA 400 × 200, Columbus, NE; initially 6.7 ± 0.07 kg) were randomized to pens (5 pigs per pen) on the day of weaning (approximately 20 d of age), allowed a 6-d acclimation, blocked by BW, and randomized to dietary treatment (9 pens per treatment). All MCFA (Sigma–Aldrich, St. Louis, MO) were guaranteed ≥98% purity, including hexanoic (C6:0), octanoic (C8:0), and decanoic (C10:0) acids. Treatment diets were formulated in 2 phases (7 to 11 and 11 to 23 kg BW) and formulated to meet or exceed NRC requirement estimates. Treatments (n = 8) were a dose response including 0%, 0.25%, 0.5%, 1.0%, and 1.5% added MCFA blend (1:1:1 ratio C6:0, C8:0, and C10:0), as well as treatments with individual additions of 0.5% C6:0, C8:0, or C10:0. Fecal samples were collected from pigs fed control and 1.5% MCFA blend diets on days 0 and 14 and analyzed using 16s rDNA sequencing. Following feed manufacture, feed was stored in bags at barn temperature and humidity for 40 d before laboratory inoculation with PEDV. Subsamples of retained feed were inoculated with PEDV to achieve a titer of 104 TCID50/g and separate sample bottles were analyzed on 0 and 3 d post-inoculation (dpi). Overall, ADG and ADFI were increased (linear, P ≤ 0.010) and feed efficiency (G:F) improved (linear, P = 0.004) with increasing MCFA blend. Pigs fed 0.5% C8:0 had greater (P = 0.038) ADG compared with pigs fed the control diet, and G:F was improved (P ≤ 0.024) when pigs were fed 0.5% C6:0, 0.5% C8:0, or 0.5% C10:0 compared with control. An inclusion level × day interaction was observed (quadratic, P = 0.023), where PEDV Ct values increased (quadratic, P = 0.001) on 0 dpi with increasing levels of MCFA blend inclusion and also increased on 3 dpi (linear, P < 0.001). Fecal microbial diversity and composition were similar between control and 1.5% MCFA blend. In summary, the use of MCFA in nursery pig diets improves growth performance, provides residual mitigation activity against PEDV, and does not significantly alter fecal microbial composition.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 173
Author(s):  
Da Shi ◽  
Xiaobo Wang ◽  
Hongyan Shi ◽  
Jiyu Zhang ◽  
Yuru Han ◽  
...  

Porcine epidemic diarrhea (PED) re-emerged in China in 2010 and is now widespread. Evidence indicates that highly virulent porcine epidemic diarrhea virus (PEDV) strains belonging to genotype G2 caused a large-scale outbreak of diarrhea. Currently, vaccines derived from PEDV classical strains do not effectively prevent infection by virulent PEDV strains, and no specific drug is available to treat the disease. RNA interference (RNAi) is a novel and effective way to cure a wide range of viruses. We constructed three short hairpin RNA (shRNA)-expressing plasmids (shR-N307, shR-N463, and shR-N1071) directed against nucleocapsid (N) and determined their antiviral activities in intestine epithelial cells infected with a classical CV777 strain and LNCT2. We verified that shR-N307, shR-N463, and shR-N1071 effectively inhibited the expression of the transfected N gene in vitro, comparable to the control shRNA. We further demonstrated the shRNAs markedly reduced PEDV CV777 and LNCT2 replication upon downregulation of N production. Therefore, this study provides a new strategy for the design of antiviral methods against coronaviruses by targeting their processivity factors.


Sign in / Sign up

Export Citation Format

Share Document