scholarly journals LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation

2022 ◽  
Vol 12 ◽  
Author(s):  
Wentao Huang ◽  
Xue Li ◽  
Chen Huang ◽  
Yukuan Tang ◽  
Quan Zhou ◽  
...  

Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.

Author(s):  
Huanghe Yu ◽  
Yixing Qiu ◽  
Shumaila Tasneem ◽  
Muhammad Daniyal ◽  
Bin Li ◽  
...  

: Rheumatoid arthritis (RA) is a chronic inflammatory disease categorized by infiltration of inflammatory cells, synovial hyperplasia, pannus formation and bone destruction, leading to disability worldwide. Despite the presence of the commercial availability of anti-RA agent on the market, the application of these drugs is limited due to its side effects. Anti-rheumatic drugs are more effective and safer being investigated by many researchers, especially, natural products with anti-RA have been identified and the underlying molecular mechanisms of action of novel and known compounds have been reported. In this review, we intend to provide a comprehensive view and updated on naturally occurring compounds known and novel that has the effect of anti-RA, and then classify them according to their molecular mechanisms of action in regulating the anti-RA lane main. The safety of compounds from natural plants and western medicine has also been briefly compared. In addition, the clinical trials with anti-RA compounds isolated from natural plants in RA were also summarized in this manuscript.


2021 ◽  
Author(s):  
Joanna Wielinska ◽  
Katarzyna Bogunia-Kubik

Common autoimmune, inflammatory rheumatic diseases including rheumatoid arthritis and ankylosing spondylitis can lead to structural and functional disability, an increase in mortality and a decrease in the quality of a patient’s life. To date, the core of available therapy consists of nonsteroidal anti-inflammatory drugs, glucocorticoids and conventional synthetic disease-modifying antirheumatic drugs, like methotrexate. Nowadays, biological therapy including anti-TNF, IL-6 and IL-1 inhibitors, as well as antibodies targeting IL-17 and Janus kinase inhibitors have been found to be helpful in the management of rheumatic conditions. The review provides a summary of the current therapy strategies with a focus on miRNA, which is considered to be a potential biomarker and possible answer to the challenges in the prediction of treatment outcome in patients with rheumatoid arthritis and ankylosing spondylitis.


2020 ◽  
Vol 26 ◽  
Author(s):  
Ritu Mishra ◽  
Swati Gupta

Background: Rheumatoid arthritis (RA) is the most common occurring progressive, autoimmune disease, affecting 1% of the population and the ratio of affected women is three times as compared to men in most developing countries. Clinical manifestations of RA are the presence of anti-citrullinated protein antibody (ACPA) and rheumatoid factor (RF) in blood, tendered joints and soreness of the muscles. Some other factors which may lead to chronic inflammation are genetic and environmental factors as well as adaptive immune response. Several conventional drugs are available for the treatment of RA but have their own drawbacks which can be overcome by the use of novel drug delivery systems. : The objective of the present review is to focus on the molecular pathogenesis of the disease and its current conventional treatment with special reference to the role of novel drug delivery systems encapsulating anti rheumatic drugs and herbal drugs in passive and receptor mediated active targeting against RA. On reviewing the conventional and current therapeutics agains RA, we conclude that, although the current therapy for the treatment of RA is capable enough, yet more advances in the field of targeted drug delivery will sanguinely result in effective and appropriate treatment of this autoimmune disease.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Scott A. Scarneo ◽  
Liesl S. Eibschutz ◽  
Phillip J. Bendele ◽  
Kelly W. Yang ◽  
Juliane Totzke ◽  
...  

Abstract Objectives To examine the ability of takinib, a selective transforming growth factor beta-activated kinase 1 (TAK1) inhibitor, to reduce the severity of murine type II collagen-induced arthritis (CIA), and to affect function of synovial cells. Methods Following the induction of CIA, mice were treated daily with takinib (50 mg/kg) and clinical scores assessed. Thirty-six days post-CIA induction, histology was performed on various joints of treated and vehicle-treated animals. Inflammation, pannus, cartilage damage, bone resorption, and periosteal bone formation were quantified. Furthermore, pharmacokinetics of takinib were evaluated by LC-MS in various tissues. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) cells were cultured with 10 μM takinib and cytokine secretion analyzed by cytokine/chemokine proteome array. Cytotoxicity of takinib for RA-FLS was measured with 24 to 48 h cultures in the presence or absence of tumor necrosis factor (TNF). Results Here, we show takinib’s ability to reduce the clinical score in the CIA mouse model of rheumatoid arthritis (RA) (p < 0.001). TAK1 inhibition reduced inflammation (p < 0.01), cartilage damage (p < 0.01), pannus, bone resorption, and periosteal bone formation and periosteal bone width in all joints of treated mice compared to vehicle treated. Significant reduction of inflammation (p < 0.004) and cartilage damage (p < 0.004) were observed in the knees of diseased treated animals, with moderate reduction seen in the forepaws and hind paws. Furthermore, the pharmacokinetics of takinib show rapid plasma clearance (t½ = 21 min). In stimulated RA-FLS cells, takinib reduced GROα, G-CSF, and ICAM-1 pro-inflammatory cytokine signaling. Conclusion Our findings support the hypothesis that TAK1 targeted therapy represents a novel therapeutic axis to treat RA and other inflammatory diseases.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 426.1-426
Author(s):  
T. Hügle ◽  
S. Nasi ◽  
D. Ehirchiou ◽  
P. Omoumi ◽  
A. So ◽  
...  

Background:Fibrin(ogen) maintains inflammation in various disorders but has never been linked to cartilage damage in rheumatoid arthritis (RA) or other forms of inflammatory arthritis.Objectives:To investigate the role of fibrin deposition on cartilage integrity in arthritis.Methods:Fibrin deposition on knee cartilage was analyzed by immunohistochemistry in RA patients and in murine adjuvant-induced arthritis (AIA). In chondrocytes, fibrinogen expression (Fgα, Fgβ, Fgγ) and procoagulant activity were evaluated by qRT-PCR and turbidimetry respectively. Fibrin-induced catabolic genes were assessed by qRT-PCR in chondrocytes. Fibrin-mediated chondro-synovial adhesion (CSA) with subsequent cartilage tears was studied in co-cultures of human RA cartilage with autologous synoviocytes, in the AIA model, and by MRI. The link between fibrin and calcification was examined in human RA cartilage stained for calcific deposits and in vitro in fibrinogen-stimulated chondrocytes.Results:Fibrin deposition on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA wildtype (WT) mice, while fibrinogen deficient (Fg-/-) mice were protected. Accordingly, fibrin upregulated catabolic enzymes (Adamts5 and Mmp13) in chondrocytes. Secondly, CSA was present in fibrin-rich and damaged cartilage in AIA WT but not in Fg-/- mice. In line, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-positive degraded areas. Gadolinium-enhanced MRI of human joints showed contrast-enhancement along cartilage surface in RA patients but not in controls. Finally, fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization inducing pro-calcification genes (Anx5, Pit1, Pc1) and cytokine (IL-6). Although at a much lesser extent, we observed similar fibrin-mediated mechanisms in osteoarthritis (OA).Conclusion:Fibrin deposition directly impacts on cartilage integrity via induction of catabolism, mechanical stress, and calcification. Potentially, fibrin is a key factor of cartilage damage occurring in RA as a secondary consequence of inflammation.Disclosure of Interests:None declared


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 582.1-582
Author(s):  
E. G. Favalli ◽  
F. Iannone ◽  
E. Gremese ◽  
R. Gorla ◽  
R. Foti ◽  
...  

Background:Long-term observational data on the real-life use of JAK inhibitors (JAKis) for rheumatoid arthritis (RA) and their comparison with biological drugs are still very limited. Large population-based registries have been increasingly used to investigate the performance of targeted drugs in a real-life setting.Objectives:The aim of this study is to evaluate and compare the 3-year retention rate of JAKis, TNF inhibitors (TNFis) and biologic drugs with other mechanisms of action (OMAs) in the large cohort of RA patients included in the Italian national GISEA registry.Methods:Data of all RA patients treated with targeted synthetic or biologic drugs were prospectively collected in the Italian multicentric GISEA registry. The analysis was limited to patients who started a first- or second-line targeted drug in the period after the first JAKi was marketed in Italy (1st December 2017). The 3-year retention rate was calculated by the Kaplan-Meier method and compared between different drug classes by a log-rank test. A descriptive analysis of reasons for discontinuation was performed.Results:The study population included 1027 RA patients (79.8% females, mean age [±SD] 56.9 [±13.5] years, mean disease duration 9.8 [±9] years, mean baseline SDAI 17.5 [±11.9], ACPA positive 67.4%, RF positive 62.7%) who received JAKis (baricitinib or tofacitinib, n=297), TNFis (n=365), or OMAs (n=365) as first or second targeted drug. Main baseline characteristics of study population were overall well balanced between treatment groups. Retention rate was numerically but not statistically higher (p=0.18) in patients treated with JAKis compared with TNFis or OMAs (80.6, 78.9 and 76.4% at 1 year and 73, 56.8 and 63.8% at 3 years, respectively) (Figure 1). Drug survival was significantly higher in patients receiving concomitant methotrexate (MTX) compared with monotherapy only in TNFis (66.8 vs 47.1%, p=0.04) but not in JAKis (76.1 vs 70.1%, p=0.54) and OMAs (66.1 vs 61.9%, p=0.41) group. Therapy was discontinued in a total of 211 patients because of ineffectiveness (n=107), adverse events (n=88), or compliance/other reasons (n=16). The most frequent reason for treatment withdrawal was ineffectiveness in both JAKis (n=30 out of 56) and TNFis (n=45 out of 74) groups, whereas OMAs were discontinued more frequently because of adverse events (n=41 out of 81).Conclusion:Our data confirmed in a real-life setting a favorable 3-year retention rate of all available targeted mechanisms of action for RA therapy. As expected, concomitant MTX significantly impacted persistence on therapy of TNFis only. Discontinuations of JAKis for adverse events were infrequent overall, confirming the safety profile observed in randomized clinical trials.Figure 1.Three-year retention rate by treatment groupDisclosure of Interests:None declared


Author(s):  
Anna Wajda ◽  
Ewa Walczuk ◽  
Barbara Stypińska ◽  
Jakub Lach ◽  
Danat Yermakovich ◽  
...  

AbstractMethotrexate (MTX) is the first-line therapy for rheumatoid arthritis. Nevertheless, MTX resistance is quite a common issue in clinical practice. There are some premises that aryl hydrocarbon receptor (AhR) gene battery may take part in MTX metabolism. In the present retrospective study, we analyzed genes expression of AHR genes battery associated with MTX metabolism in whole blood of RA patients with good and poor response to MTX treatment. Additionally, sequencing, genotyping and bioinformatics analysis of AHR repressor gene (AHRR) c.565C > G (rs2292596) and c.1933G > C (rs34453673) have been performed. Theoretically, both changes may have an impact on H3K36me3 and H3K27me3. Evolutionary analysis revealed that rs2292596 may be possibly damaging. Allele G in rs2292596 and DAS28 seems to be associated with a higher risk of poor response to MTX treatment in RA. RA patients with poor response to MTX treatment revealed upregulated AhR and SLC19A1 mRNA level. Treatment with IL-6 inhibitor may be helpful to overcome the low-dose MTX resistance. Analysis of gene expression revealed possible another cause of poor response to MTX treatment which is different from that observed in the case of acute lymphoblastic leukemia.


1972 ◽  
Vol 2 (19) ◽  
pp. 1070-1070 ◽  
Author(s):  
D. Walters ◽  
R. G. Robinson ◽  
J. B. Dick‐Smith ◽  
A. B. Corrigan ◽  
J. Webb

2021 ◽  
Vol 22 (5) ◽  
pp. 2693
Author(s):  
Antimo Moretti ◽  
Marco Paoletta ◽  
Sara Liguori ◽  
Walter Ilardi ◽  
Francesco Snichelotto ◽  
...  

Background: Several pharmacological therapeutic approaches have been proposed to manage osteoarthritis (OA), including intra-articular (IA) injections. Although the discovery of clodronate, a bisphosphonate, dates back to the 1960s and the effects of its IA administration have been investigated for decades in animal models, mechanisms of action of this drug are not quite clear, particularly in OA. This scoping review is an overview of the biological as well as the clinical role of clodronic acid in OA. Method: A scoping review based on the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) model was performed to characterize the mechanisms of action of IA clodronate in OA and to evaluate its efficacy from a clinical point of view. Results: Several effects of clodronate have been observed in animal models of OA, including depletion of synovial lining cells that results in reduced production of chemokines (IL-1, TNF- α), growth factors (TGF-β, BMP 2/4), and metalloproteases (MMP 2/3/9); prevention of cartilage damage, synovial hyperplasia, and proteoglycans loss; reduction in joint inflammation, joint swelling, and osteophyte formation. From a clinical perspective, patients with knee OA treated with IA clodronate experienced improvements in pain and joint mobility. Conclusion: Clodronate appears to have different mechanisms of action interfering with the pathogenic processes contributing to OA development and progression. This intervention demonstrated positive effects for patients affected by knee OA.


Sign in / Sign up

Export Citation Format

Share Document