scholarly journals The Transient IFN Response and the Delay of Adaptive Immunity Feature the Severity of COVID-19

2022 ◽  
Vol 12 ◽  
Author(s):  
Gang Xu ◽  
Furong Qi ◽  
Haiyan Wang ◽  
Yu Liu ◽  
Xin Wang ◽  
...  

COVID-19 patients show heterogeneous and dynamic immune features which determine the clinical outcome. Here, we built a single-cell RNA sequencing (scRNA-seq) dataset for dissecting these complicated immune responses through a longitudinal survey of COVID-19 patients with various categories of outcomes. The data reveals a highly fluctuating peripheral immune landscape in severe COVID-19, whereas the one in asymptomatic/mild COVID-19 is relatively steady. Then, the perturbed immune landscape in peripheral blood returned to normal state in those recovered from severe COVID-19. Importantly, the imbalance of the excessively strong innate immune response and delayed adaptive immunity in the early stage of viral infection accelerates the progression of the disease, indicated by a transient strong IFN response and weak T/B-cell specific response. The proportion of abnormal monocytes appeared early and rose further throughout the severe disease. Our data indicate that a dynamic immune landscape is associated with the progression and recovery of severe COVID-19, and have provided multiple immune biomarkers for early warning of severe COVID-19.

2021 ◽  
Author(s):  
Christopher M Weiss ◽  
Hongwei Liu ◽  
Erin E Ball ◽  
Samuel Lam ◽  
Tomas Hode ◽  
...  

The rapid emergence and global dissemination of SARS-CoV-2 that causes COVID-19 continues to cause an unprecedented global health burden resulting in more than 4 million deaths in the 20 months since the virus was discovered. While multiple vaccine countermeasures have been approved for emergency use, additional treatments are still needed due to sluggish vaccine rollout and vaccine hesitancy. Immunoadjuvant compounds delivered intranasally can guide non-specific innate immune responses during the critical early stages of viral replication, reducing morbidity and mortality. N-dihydrogalactochitosan (GC) is a novel mucoadhesive immunostimulatory polymer of β-0-4-linked N-acetylglucosamine that is solubilized by the conjugation of galactose glycans. We tested GC as a potential countermeasure for COVID-19. GC administered intranasally before and after SARS-CoV-2 exposure diminished morbidity and mortality in humanized ACE2 receptor expressing mice by up to 75% and reduced infectious virus levels in the upper airway and lungs. Our findings demonstrate a new application for soluble immunoadjuvants like GC for preventing severe disease associated with SARS-CoV-2.


Vaccine ◽  
2003 ◽  
Vol 21 ◽  
pp. S48-S54 ◽  
Author(s):  
Grazia Galli ◽  
Sandra Nuti ◽  
Simona Tavarini ◽  
Luisa Galli-Stampino ◽  
Claudia De Lalla ◽  
...  

2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Paula L. Monteagudo ◽  
Raquel Muñoz-Moreno ◽  
Miguel Fribourg ◽  
Uma Potla ◽  
Ignacio Mena ◽  
...  

ABSTRACT The influenza A virus (IAV) nonstructural protein 1 (NS1) contributes to disease pathogenesis through the inhibition of host innate immune responses. Dendritic cells (DCs) release interferons (IFNs) and proinflammatory cytokines and promote adaptive immunity upon viral infection. In order to characterize the strain-specific effects of IAV NS1 on human DC activation, we infected human DCs with a panel of recombinant viruses with the same backbone (A/Puerto Rico/08/1934) expressing different NS1 proteins from human and avian origin. We found that these viruses induced a clearly distinct phenotype in DCs. Specifically, viruses expressing NS1 from human IAV (either H1N1 or H3N2) induced higher levels of expression of type I (IFN-α and IFN-β) and type III (IFN-λ1 to IFNλ3) IFNs than viruses expressing avian IAV NS1 proteins (H5N1, H7N9, and H7N2), but the differences observed in the expression levels of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6) were not significant. In addition, using imaging flow cytometry, we found that human and avian NS1 proteins segregate based on their subcellular trafficking dynamics, which might be associated with the different innate immune profile induced in DCs by viruses expressing those NS1 proteins. Innate immune responses induced by our panel of IAV recombinant viruses were also characterized in normal human bronchial epithelial cells, and the results were consistent with those in DCs. Altogether, our results reveal an increased ability of NS1 from avian viruses to antagonize innate immune responses in human primary cells compared to the ability of NS1 from human viruses, which could contribute to the severe disease induced by avian IAV in humans. IMPORTANCE Influenza A viruses (IAVs) cause seasonal epidemics which result in an important health and economic burden. Wild aquatic birds are the natural host of IAV. However, IAV can infect diverse hosts, including humans, domestic poultry, pigs, and others. IAVs circulating in animals occasionally cross the species barrier, infecting humans, which results in mild to very severe disease. In some cases, these viruses can acquire the ability to be transmitted among humans and initiate a pandemic. The nonstructural 1 (NS1) protein of IAV is an important antagonist of the innate immune response. In this study, using recombinant viruses and primary human cells, we show that NS1 proteins from human and avian hosts show intrinsic differences in the modulation of the innate immunity in human dendritic cells and epithelial cells, as well as different cellular localization dynamics in infected cells.


Vaccine ◽  
2016 ◽  
Vol 34 (33) ◽  
pp. 3882-3893 ◽  
Author(s):  
Aleksandra Kowalczyk ◽  
Fatma Doener ◽  
Kai Zanzinger ◽  
Janine Noth ◽  
Patrick Baumhof ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nikoletta Rovina ◽  
Antonia Koutsoukou ◽  
Nikolaos G. Koulouris

Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 455
Author(s):  
Judith Oymans ◽  
Paul J. Wichgers Schreur ◽  
Sophie van Oort ◽  
Rianka Vloet ◽  
Marietjie Venter ◽  
...  

The genus Orthobunyavirus (family Peribunyaviridae, order Bunyavirales) comprises over 170 named mosquito- and midge-borne viruses, several of which cause severe disease in animals or humans. Their three-segmented genomes enable reassortment with related viruses, which may result in novel viruses with altered host or tissue tropism and virulence. One such reassortant, Schmallenberg virus (SBV), emerged in north-western Europe in 2011. Shuni virus (SHUV) is an orthobunyavirus related to SBV that is associated with neurological disease in horses in southern Africa and recently caused an outbreak manifesting with neurological disease and birth defects among ruminants in Israel. The zoonotic potential of SHUV was recently underscored by its association with neurological disease in humans. We here report a reverse genetics system for SHUV and provide first evidence that the non-structural (NSs) protein of SHUV functions as an antagonist of host innate immune responses. We furthermore report the rescue of a reassortant containing the L and S segments of SBV and the M segment of SHUV. This novel reverse genetics system can now be used to study SHUV virulence and tropism, and to elucidate the molecular mechanisms that drive reassortment events.


Parasitology ◽  
2005 ◽  
Vol 130 (S1) ◽  
pp. S45-S62 ◽  
Author(s):  
T. NEBL ◽  
M. J. DE VEER ◽  
L. SCHOFIELD

The glycosylphosphatidylinositol (GPI) anchor ofPlasmodium falciparumis thought to function as a critical toxin that contributes to severe malarial pathogenesis by eliciting the production of proinflammatory responses by the innate immune system of mammalian hosts. Analysis of the fine structure ofP. falciparumGPI suggests a requirement for the presence of both core glycan and lipid moieties in the recognition and signalling of parasite glycolipids by host immune cells. It has been demonstrated that GPI anchors of various parasitic protozoa can mediate cellular immune responses via members of the Toll-like family of pattern recognition receptors (TLRs). Recent studies indicate that GPI anchors ofP. falciparumand other protozoa are preferentially recognized by TLR-2, involving the MyD88-dependent activation of specific signalling pathways that mediate the production of proinflammatory cytokines and nitric oxide from host macrophagesin vitro. However, the contribution of malaria GPI toxin to severe disease syndromes and the role of specific TLRs or other pattern recognition receptors in innate immunityin vivois only just beginning to be characterized. A better understanding of the molecular mechanisms underlying severe malarial pathogenesis may yet lead to substantial new insights with important implications for the development of novel therapeutics for malaria treatment.


2021 ◽  
Author(s):  
Elena Winheim ◽  
Linus Rinke ◽  
Konstantin Lutz ◽  
Anna Reischer ◽  
Alexandra Leutbecher ◽  
...  

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DC) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute disease to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage- HLADR+ cells lacking DC markers. Increased frequency of the recently discovered CD163+ CD14+ DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of PD-L1 in conventional DC (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naive CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document