scholarly journals Roles of Polymorphonuclear Neutrophils in Ischemic Brain Injury and Post-Ischemic Brain Remodeling

2022 ◽  
Vol 12 ◽  
Author(s):  
Ayan Mohamud Yusuf ◽  
Nina Hagemann ◽  
Peter Ludewig ◽  
Matthias Gunzer ◽  
Dirk M. Hermann

Following ischemic stroke, polymorphonuclear neutrophils (PMNs) are rapidly recruited to the ischemic brain tissue and exacerbate stroke injury by release of reactive oxygen species (ROS), proteases and proinflammatory cytokines. PMNs may aggravate post-ischemic microvascular injury by obstruction of brain capillaries, contributing to reperfusion deficits in the stroke recovery phase. Thus, experimental studies which specifically depleted PMNs by delivery of anti-Ly6G antibodies or inhibited PMN brain entry, e.g., by CXC chemokine receptor 2 (CXCR2) or very late antigen-4 (VLA-4) blockade in the acute stroke phase consistently reduced neurological deficits and infarct volume. Although elevated PMN responses in peripheral blood are similarly predictive for large infarcts and poor stroke outcome in human stroke patients, randomized controlled clinical studies targeting PMN brain infiltration did not improve stroke outcome or even worsened outcome due to serious complications. More recent studies showed that PMNs have decisive roles in post-ischemic angiogenesis and brain remodeling, most likely by promoting extracellular matrix degradation, thereby amplifying recovery processes in the ischemic brain. In this minireview, recent findings regarding the roles of PMNs in ischemic brain injury and post-ischemic brain remodeling are summarized.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 330-330
Author(s):  
Anil Chauhan ◽  
Mohammad M Khan ◽  
Chintan Gandhi ◽  
Neelam Chauhan ◽  
Asgar Zaheer ◽  
...  

Abstract Abstract 330 Background: Fibronectin (FN) is a dimeric glycoprotein that plays an important role in several cellular processes, such as embryogenesis, malignancy, hemostasis, wound healing and maintenance of tissue integrity. FN is a ligand for many members of the integrin family (e.g. αIIbβ3, α5β1, α4β1, α9β1, αvβ3 and αvβ5) and also binds to thrombosis-related proteins including heparin, collagen and fibrin. FN generates protein diversity as a consequence of alternative processing of a single primary transcript. Two forms of FN exist; soluble plasma FN (pFN), which lacks the alternatively-spliced Extra Domain A (EDA); and insoluble cellular FN (cFN), which contains EDA. FN containing EDA (EDA+FN) is normally absent in plasma of human and mouse but EDA+FN has been found in patients with vascular injury secondary to vasculitis, sepsis, acute major trauma or ischemic stroke. We tested the hypothesis that elevated levels of plasma EDA+FN increase brain injury in an experimental model of ischemic stroke in mice. Model and Method: We used two genetically modified mouse strains: EDA+/+ mice contain optimized spliced sites at both splicing junctions of the EDA exon and constitutively express only EDA+FN, whereas EDA-/- mice contain an EDA-null allele of the EDA exon and express only FN lacking EDA. Control EDAwt/wt mice contain the wild-type FN allele. Transient focal cerebral ischemia was induced by 60 minutes of occlusion of the right middle cerebral artery with a 7.0 siliconized filament in male mice (8-10 weeks in age). Mice were anesthetized with 1–1.5% isoflurane mixed with medical air. Body temperature was maintained at 37°C ± 1.0 using a heating pad. Laser Doppler flowmetry was used to confirm induction of ischemia and reperfusion. At 23 hours after MCAO, mice were evaluated for neurological deficits as a functional outcome and were sacrificed for quantification of infarct volume. For morphometric measurement eight 1 mm coronal sections were stained with 2% triphenyl-2, 3, 4-tetrazolium-chloride (TTC). Sections were digitalized and infarct areas were measured blindly using NIS elements. Result: In EDA+/+ mice the percentage of infarct volume (mean ± SEM: 37.25 ± 4.11, n= 12,) in the ipsilateral (ischemic) hemisphere was increased by approximately two-fold compared to EDA wt/wt mice (mean ± SEM: 22.33 ± 3.39, n=11; P< 0.05, ANOVA) or EDA-/- mice (mean ± SEM: 21.72 ± 2.94, n=9). Regional cerebral blood flow during ischemia was not different among groups as assessed by laser Doppler flowmetry. The percentage increase in infarct volume in the EDA+/+ mice correlated well with severe neurological deficits (motor-deficit assessed by a four-point neurological score scale) compared to EDA wt/wt or EDA-/- mice. Because both thrombosis and inflammation contributes to brain injury during ischemic stroke, we investigated the time to form an occlusive thrombus in ferric-chloride carotid artery injury model by intravital microscopy. EDA+/+ mice demonstrated significantly faster time to occlusion (mean ± SEM: 12.35 ± 1.51 n=12,) compared to EDAwt/wt (Mean ± SEM: 17.27 ± 1.72 min, n=13, P<0.05, ANOVA) or EDA-/- (Mean ± SEM: 15.61 ± 1.76, n=11) mice. Additionally, the inflammatory response in the ischemic region was increased by two fold in EDA+/+ mice compared to EDA wt/wt and EDA-/- mice as sensed by myeloperoxidase activity and immunohistochemical analysis of neutrophils. Conclusion: EDA-containing FN is pro-thrombotic and pro-inflammatory, and aggravates ischemic brain injury in an experimental model of stroke in mice. The presence of EDA+FN in plasma may be a risk factor for vascular injury secondary to ischemic stroke. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 109 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Alireza P. Shabanzadeh ◽  
Ashfaq Shuaib ◽  
Chen Xu Wang

Object Statins have been used for induction of ischemic tolerance after cerebral ischemia. The authors have previously shown that simvastatin is protective after ischemic cerebral injury in normothermic conditions. In this study they further examined whether treatment with simvastatin can reduce ischemic brain injury in a hyperthermic condition. Methods Focal ischemic brain injury was induced by embolizing a preformed clot into the middle cerebral artery in rats. The authors initially examined whether treatment with simvastatin could reduce ischemic brain injury without or with hyperthermia. The infarct volume, edema, and neurological deficits were examined. They then studied whether simvastatin could reduce the perfusion deficits, damage to the blood–brain barrier (BBB), and degeneration of neurons in the ischemic injured brain. Results Simvastatin significantly reduced the infarct volume in both normothermic and hyperthermic conditions, compared with appropriate controls. Concomitantly, this treatment also significantly reduced neurological deficits and brain edema. Administration of simvastatin significantly decreased perfusion deficits, BBB permeability, and degenerated neurons. Conclusions These studies suggest that simvastatin is an effective agent for ischemic brain injury not only in normothermic but also in hyperthermic conditions, which may be through the decrease of BBB permeability, degenerated neurons, and perfusion deficits.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Fanxia Shen ◽  
Vincent Degos ◽  
Zhenying Han ◽  
Eun-Jung Choi ◽  
William L. Young ◽  
...  

Background and Objective: Endoglin (Eng) deficiency causes hereditary hemorrhagic telangiectasia (HHT) and impairs myocardial repair. Pulmonary arteriovenous malformations in HHT patients are associated with a high incidence of paradoxical embolism in the cerebral circulation and ischemic brain injury. We hypothesized that Eng deficiency exacerbates ischemic brain injury. Methods: Eng heterozygous ( Eng +/- ) mice and wild type (WT) mice underwent permanent distal middle cerebral artery occlusion (pMCAO). Infarct volume and CD68 + cells were quantified 3 days and vascular density was determined 60 days after pMCAO. Behavior was assessed by corner test and adhesive removal test at 3, 15, 30 and 60 days after pMCAO. Matrix metalloproteinase 9 (Mmp9) and Notch1 expression in bone marrow (BM)-derived macrophages from Eng +/- and WT were analyzed using real-time RT-PCR. Results: Eng +/- mice had a larger Infarct volume than WT mice (22±6% of the affected hemisphere vs. 16±6%, p=0.04). Eng +/- mice had longer adhesive-removal time (p<0.05) and more frequent turning to the lesion side than WT mice at 15, 30 and 60 days (p<0.05) after pMCAO. Both groups had similar numbers of CD68 + cells in the peri-infarct area at 3 days after pMCAO (370±80 vs 338±44 cells/mm 2 , p=0.37), but Eng +/- mice had lower peri-infarct vessel density (417±69 vs 490±52 vessels/mm 2 , p=0.05) at 60 days after pMCAO. Up-regulation of Mmp9 and Notch1 expression in response to VEGF was attenuated in Eng +/- BM-derived macrophages. Conclusions: Endoglin deficiency exacerbated brain injury and behavior dysfunction in mice after pMCAO and was associated with reduced angiogenesis. Although macrophage homing was not affected, reduced expression of two angiogenic-related genes, Mmp9 and Notch1 , by Eng +/- BM-derived macrophages suggests a potential role of these cells in recovery from an ischemic injury.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Jianming Wang ◽  
Sheetal Bodhankar ◽  
Halina Offner ◽  
Stephanie J Murphy

It is now increasingly clear that human stroke can have other serious consequences besides brain damage that can impact on patient survival and recovery. For example, many stroke patients succumb to CNS injury-induced immunodepression and fatal infections. Our prior work suggests that evolving cerebral ischemic injury elicits a cycle of injury from brain-to-spleen-to-brain that is strongly influenced by sex. We determined if splenic immunocytes are important in contributing to sex differences in post-ischemic brain injury. Male and female C57BL/6J mice were splenectomized 14 days before experimental stroke. Male and female mice with or without splenectomy (n=9-10 per group) then underwent 60 min of middle cerebral artery occlusion (MCAO) via intraluminal filament. Laser-Doppler flowmetry (LDF) was used to monitor cortical perfusion. All mice were euthanized and brains collected at 96 hours of reperfusion. Infarct volume (% corrected contralateral structure) was determined by image analysis of coronal brain slices stained with 2,3,5-triphenyltetrazolium chloride. Mean arterial blood pressure (MABP), blood gases (pH, P a O 2 , P a CO 2 ), and blood glucose were measured at 30 min MCAO and at 15 min of reperfusion in separate groups of male and female mice with or without splenectomy (n=5 per group). Relative LDF changes (% baseline), MABP, blood gases, and blood glucose during and after MCAO were comparable among the experimental groups. We observed that infarct volume in females (cortex, 41±4%; striatum, 55±6%) was smaller ( P <0.05) compared to males (cortex, 52±3%; striatum, 75±3%) at 96 hours of reperfusion. However, no differences (cortex, P =0.313; striatum, P =0.601) in infarct volume were seen between splenectomized male (cortex, 43±4%; striatum, 51±7%) and female (cortex, 38±4%; striatum, 46±5%) mice. Our data suggest that removal of all splenocyte lineages via splenectomy attenuates sex differences in post-ischemic brain injury. Future studies will evaluate the role of different splenic immunocyte subsets, such as T or B lymphocytes, on male vs. female ischemic brain outcomes. This study was supported by National Institutes of Health grant NS076013.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Jian Chen ◽  
Yun Xu

Background: Long non-coding RNAs (LncRNAs) are expressed at high levels in the brain in a variety of neuropathologic conditions, including stroke. However, the potential role of LncRNAs in ischemic stroke-associated microglial biological function and neurological injury remains largely unknown. Methods: Oxygen-glucose deprivation and transient middle cerebral artery occlusion (MCAO) in C57BL/6 mice were used as in vitro and in vivo ischemic stroke models. Microarray analysis was performed to explore the overall expression level changes of LncRNAs. Real-time polymerase chain reaction (RT-qPCR) was used to detect expression level of LncU90926 in brain, plasma and microglia. ShRNA-LncU90926 in lentivirus and microglia specific Adeno-associated virus (AAV) were used to knockdown LncU90926 in vitro and in vivo separately. Infarct volumes and neurological impairments were assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining, Neurological Severity Scores (NSS), rotarod test and grip strength respectively. Immunofluorescence staining and flow cytometry were performed to detect the number of neutrophils recruited to brain. RT-qPCR was used to detect the level of chemokines (CXCL, CCL2) and inflammatory mediators associated with neutrophils (MPO, MMP3 and TIMP1). Results: (1). LncU90926 was markedly up-regulated in the infarcted brain and plasma after MCAO. Both MCAO and OGD treatment induced remarkable up-regulation of LncU90926 in microglia. (2). LncU90926 knockdown definitely attenuated brain infarct size and neurological deficits after ischemic stroke. (3). LncU90926 knockdown in microglia reduced the number of neutrophils recruited to brain, and CXCL1 and CCL2 were down-regulated in both MCAO and OGD models. LncU90926 knockdown also induced reduction of MPO, MMP3 and TIMP1 in the infarcted brain. Conclusions: LncU90926 was up-regulated in microglia after experimental stroke, and aggravates ischemic brain injury through facilitating neutrophils infiltration via up-regulating microglial chemokine.


1996 ◽  
Vol 13 (4) ◽  
pp. 215-222 ◽  
Author(s):  
CHENG DU ◽  
RONG HU ◽  
CHUNG Y. HSU ◽  
DENNIS W. CHOI

1989 ◽  
Vol 256 (2) ◽  
pp. H589-H593 ◽  
Author(s):  
T. H. Liu ◽  
J. S. Beckman ◽  
B. A. Freeman ◽  
E. L. Hogan ◽  
C. Y. Hsu

Superoxide dismutase and catalase enzymatically scavenge superoxide and hydrogen peroxide, respectively. Conjugation of polyethylene glycol to superoxide dismutase (PEG-SOD) or catalase (PEG-CAT) prolongs the circulatory half-life of the native enzymes and enhances their intracellular access. We studied the protective effect of these free radical scavengers on ischemic brain injury using a rat model of focal cerebral ischemia, which is suitable for therapeutic trials. Intravenous administration of PEG-SOD (10,000 U/kg) and PEG-CAT (10,000 U/kg) before ischemia reduced the infarct volume (treatment, 139 +/- 9 mm3, means +/- SE, N = 38; placebo, 182 +/- 8 mm3, n = 37, P less than 0.002). This finding supports the concept that superoxide and hydrogen peroxide contribute to brain injury following focal cerebral ischemia.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Luther C Pettigrew ◽  
Melissa A Bradley-Whitman ◽  
Mark A Lovell

BACKGROUND: Pre-hospital detection of ischemic brain injury will exclude stroke mimics and refine patient triage. Using “dipstick” immuno-chromatography, we validated a rapid-sequence method to identify visinin-like protein-1 (VILIP-1), a neuronal injury marker, in blood sampled after focal cerebral ischemia in rats. METHODS: Transgenic (Tg) rats were constructed to over-express tumor necrosis factor-alpha (TNFα) in brain. Suture-occlusion of the middle cerebral artery (MCAO) was performed in TNFα-Tg animals and wild type (WT) littermates for 1 hr. Arterial blood was sampled at pre-ischemic baseline, after 60 min of MCAO, and at 15 min or 24 hrs of post-ischemic reperfusion. VILIP-1 immuno-reactivity was normalized to pre-ischemic baseline and compared to sham-ischemic animals. Brain infarct volume was measured at 24 hrs. VILIP-1 immuno-reactivity was then correlated with infarct volume to derive Pearson product moment. RESULTS: VILIP-1 immuno-reactivity was increased after 24 hrs of post-ischemic reperfusion in TNFα-Tg animals (133 ± 13 [SD]% of baseline) compared to sham-ischemic rats (100 ± 22; p ≤ 0.05; ANOVA; n = 5 per group). At 15 min (159 ± 36%) and 24 hrs (above), VILIP-1 expression was greater than pre-ischemic baseline ( p ≤ 0.05). Immuno-reactivity of VILIP-1 at 15-min post-ischemic reperfusion was strongly correlated with infarct volume measured at 24 hrs in TNFα-Tg rats (Pearson 0.79; p ≤ 0.01). CONCLUSIONS: Whole blood immuno-chromatography of VILIP-1 is feasible and correlates positively with infarct volume measured at 24 hrs in the rat. These promising results underscore the need to study VILIP-1 immuno-reactivity as an indicator of ischemic brain injury in the pre-hospital setting.


Sign in / Sign up

Export Citation Format

Share Document