scholarly journals Behavioral Response Study on Seismic Airgun and Vessel Exposures in Narwhals

2021 ◽  
Vol 8 ◽  
Author(s):  
Mads Peter Heide-Jørgensen ◽  
Susanna B. Blackwell ◽  
Outi M. Tervo ◽  
Adeline L. Samson ◽  
Eva Garde ◽  
...  

One of the last pristine marine soundscapes, the Arctic, is exposed to increasing anthropogenic activities due to climate-induced decrease in sea ice coverage. In this study, we combined movement and behavioral data from animal-borne tags in a controlled sound exposure study to describe the reactions of narwhals, Monodon monoceros, to airgun pulses and ship noise. Sixteen narwhals were live captured and instrumented with satellite tags and Acousonde acoustic-behavioral recorders, and 11 of them were exposed to airgun pulses and vessel sounds. The sound exposure levels (SELs) of pulses from a small airgun (3.4 L) used in 2017 and a larger one (17.0 L) used in 2018 were measured using drifting recorders. The experiment was divided into trials with airgun and ship-noise exposure, intertrials with only ship-noise, and pre- and postexposure periods. Both trials and intertrials lasted ∼4 h on average per individual. Depending on the location of the whales, the number of separate exposures ranged between one and eight trials or intertrials. Received pulse SELs dropped below 130 dB re 1 μPa2 s by 2.5 km for the small airgun and 4–9 km for the larger airgun, and background noise levels were reached at distances of ∼3 and 8–10.5 km, respectively, for the small and big airguns. Avoidance reactions of the whales could be detected at distances >5 km in 2017 and >11 km in 2018 when in line of sight of the seismic vessel. Meanwhile, a ∼30% increase in horizontal travel speed could be detected up to 2 h before the seismic vessel was in line of sight. Applying line of sight as the criterion for exposure thus excludes some potential pre-response effects, and our estimates of effects must therefore be considered conservative. The whales reacted by changing their swimming speed and direction at distances between 5 and 24 km depending on topographical surroundings where the exposure occurred. The propensity of the whales to move towards the shore increased with increasing exposure (i.e., shorter distance to vessels) and was highest with the large airgun used in 2018, where the whales moved towards the shore at distances of 10–15 km. No long-term effects of the response study could be detected.

2021 ◽  
Vol 17 (11) ◽  
Author(s):  
Outi M. Tervo ◽  
Susanna B. Blackwell ◽  
Susanne Ditlevsen ◽  
Alexander S. Conrad ◽  
Adeline L. Samson ◽  
...  

Anthropogenic activities are increasing in the Arctic, posing a threat to niche-conservative species with high seasonal site fidelity, such as the narwhal Monodon monoceros . In this controlled sound exposure study, six narwhals were live-captured and instrumented with animal-borne tags providing movement and behavioural data, and exposed to concurrent ship noise and airgun pulses. All narwhals reacted to sound exposure with reduced buzzing rates, where the response was dependent on the magnitude of exposure defined as 1/distance to ship. Buzzing rate was halved at 12 km from the ship, and whales ceased foraging at 7–8 km. Effects of exposure could be detected at distances > 40 km from the ship.At only a few kilometres from the ship, the received high-frequency cetacean weighted sound exposure levels were below background noise indicating extreme sensitivity of narwhals towards sound disturbance and demonstrating their ability to detect signals embedded in background noise. The narwhal's reactions to sustained disturbance may have a plethora of consequences both at individual and population levels. The observed reactions of the whales demonstrate their auditory sensitivity but also emphasize, that anthropogenic activities in pristine narwhal habitats needs to be managed carefully if healthy narwhal populations are to be maintained.


Noise Mapping ◽  
2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Ioannis Karipidis ◽  
Danielle Vienneau ◽  
Manuel Habermacher ◽  
Micha Köpflii ◽  
Mark Brink ◽  
...  

AbstractIn 2014 the three-year interdisciplinary study SiRENE (Short and Long Term Effects of Traffic Noise Exposure) was launched in Switzerland. The goal of SiRENE is to investigate acute, short- and long-term e_ects of road, railway and aircraft noise exposure on annoyance, sleep disturbances and cardio-metabolic risk.The study is based on a detailed Swiss-wide assessment of transportation noise exposure, including diurnal distributions. The exposure analysis comprises current as well as historical exposure calculations for up to 20 years in the past.We present the major challenges of compiling sufficient data to support a Swiss-wide model for all buildings and including all transport infrastructure as a basis for the subsequent SiRENE sound exposure analysis for the years 2011, 2001 and 1991. The task is particularly challenging for the early years due to poor data quality and/or lack of availability. We address the integration of geo-referenced input datasets from various sources and time periods, the assignment of tra_c noise exposure from façade points to dwelling units, as well as the processing of traffic information and statistics. Preliminary results of the noise exposure calculations are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Moritz Gröschel ◽  
Jana Ryll ◽  
Romy Götze ◽  
Arne Ernst ◽  
Dietmar Basta

Noise exposure leads to an immediate hearing loss and is followed by a long-lasting permanent threshold shift, accompanied by changes of cellular properties within the central auditory pathway. Electrophysiological recordings have demonstrated an upregulation of spontaneous neuronal activity. It is still discussed if the observed effects are related to changes of peripheral input or evoked within the central auditory system. The present study should describe the intrinsic temporal patterns of single-unit activity upon noise-induced hearing loss of the dorsal and ventral cochlear nucleus (DCN and VCN) and the inferior colliculus (IC) in adult mouse brain slices. Recordings showed a slight, but significant, elevation in spontaneous firing rates in DCN and VCN immediately after noise trauma, whereas no differences were found in IC. One week postexposure, neuronal responses remained unchanged compared to controls. At 14 days after noise trauma, intrinsic long-term hyperactivity in brain slices of the DCN and the IC was detected for the first time. Therefore, increase in spontaneous activity seems to develop within the period of two weeks, but not before day 7. The results give insight into the complex temporal neurophysiological alterations after noise trauma, leading to a better understanding of central mechanisms in noise-induced hearing loss.


2009 ◽  
Vol 5 (4) ◽  
pp. 565-567 ◽  
Author(s):  
T. Aran Mooney ◽  
Paul E. Nachtigall ◽  
Stephanie Vlachos

There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin ( Tursiops truncatus ). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa 2  s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects.


2019 ◽  
Author(s):  
Ramona J. Heim ◽  
Anna Bucharova ◽  
Leya Brodt ◽  
Johannes Kamp ◽  
Daniel Rieker ◽  
...  

AbstractWildfires are relatively rare in subarctic tundra ecosystems, but they can strongly change ecosystem properties. Short-term fire effects on subarctic tundra vegetation are well documented, but long-term vegetation recovery has been studied less. The frequency of tundra fires will increase with climate warming. Understanding the long-term effects of fire is necessary to predict future ecosystem changes.We used a space-for-time approach to assess vegetation recovery after fire over more than four decades. We studied soil and vegetation patterns on three large fire scars (>44, 28 and 12 years old) in dry, lichen-dominated forest tundra in Western Siberia. On 60 plots, we determined soil temperature and permafrost thaw depth, sampled vegetation and measured plant functional traits. We assessed trends in NDVI to support the field-based results on vegetation recovery.Soil temperature, permafrost thaw depth and total vegetation cover had recovered to pre-fire levels after >44 years, as well as total vegetation cover. In contrast, after >44 years, functional groups had not recovered to the pre-fire state. Burnt areas had lower lichen and higher bryophyte and shrub cover. The dominating shrub species, Betula nana, exhibited a higher vitality (higher specific leaf area and plant height) on burnt compared with control plots, suggesting a fire legacy effect in shrub growth. Our results confirm patterns of shrub encroachment after fire that were detected before in other parts of the Arctic and Subarctic. In the so far poorly studied Western Siberian forest tundra we demonstrate for the first time, long-term fire-legacies on the functional composition of relatively dry shrub- and lichen-dominated vegetation.


2021 ◽  
Author(s):  
Esther R. Frei ◽  
Greg H.R. Henry

Arctic regions are particularly affected by rapidly rising temperatures and altered snow regimes. Snowmelt timing depends on spring temperatures and winter snow accumulation. Scenarios for the Arctic include both decreases and increases in snow accumulation. Predictions of future snowmelt timing are thus difficult and experimental evidence for ecological consequences is scarce. In 1995, a long-term factorial experiment was set up in a High Arctic evergreen shrub heath community on Ellesmere Island, Canada. We investigated how snow removal, snow addition and passive warming affected phenology, growth and reproductive effort of the four common tundra plant species <i>Cassiope tetragona</i>, <i>Dryas integrifolia</i>, <i>Luzula arctica</i> and <i>Papaver radicatum</i>. Timing of flowering and seed maturation as well as flower production were more strongly influenced by the combined effects of snowmelt timing and warming in the two shrub species than in the two herbaceous species. Warming effects persisted over the course of the growing season and resulted in increased shrub growth. Moreover, the long-term trend of increasing growth in two species suggests that ambient warming promotes tundra plant growth. Our results confirm the importance of complex interactions between temperature and snowmelt timing in driving species-specific plant responses to climate change in the Arctic.


2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Nicole Probst-Hensch* ◽  
Foraster Maria ◽  
Ikenna Eze ◽  
Emmanuel Schaffner ◽  
Harris Héritier ◽  
...  

Noise Mapping ◽  
2017 ◽  
Vol 4 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Felix Schlatter ◽  
A. Piquerez ◽  
M. Habermacher ◽  
M. S. Ragettli ◽  
M. Röösli ◽  
...  

Abstract Large scale noise exposure modelling is used in epidemiological research projects as well as for noise mapping and strategic action planning. Such calculations should always be accompanied by an assessment of uncertainty, on the one hand to check for systematic deviations and on the other hand to investigate the sources of uncertainty to address them in future studies. Within the SiRENE (Short and Long Term Effects of Transportation Noise Exposure) project, a large scale nationwide assessment of Switzerland’s road, railway, and aircraft noise exposure was conducted for the year 2011. In the present follow-up study, we equipped 180 sleeping and/or living room windows with sound level meters for one week. The resulting dataset was used to validate noise exposure modelling within SiRENE. For the noise metric LDEN the comparison revealed a difference of 1.6 ± 5 dB(A) when taking all measurements into account. After removing measurement sites with noise mitigation measures not considered in the modelling, the difference to the calculation was reduced to 0.5 ± 4 dB(A). As major sources of uncertainty, the position accuracy and topicality of infrastructure and building geometries, the traffic modelling as well as the acoustic source and propagation models were identified.


Sign in / Sign up

Export Citation Format

Share Document