scholarly journals Investigations Exploring the Use of an Unstructured-Grid, Finite-Volume Modelling Approach to Simulate Coastal Circulation in Remote Island Settings—Case Study Region, Vanuatu/New Caledonia

2021 ◽  
Vol 8 ◽  
Author(s):  
Serena Blyth Lee ◽  
Fan Zhang ◽  
Charles James Lemckert ◽  
Rodger Tomlinson

Understanding coastal circulation and how it may alter in the future is important in island settings, especially in the South West Pacific, where communities rely heavily upon marine resources, and where sea level rise (SLR) is higher than the global average. In this study we explore the use of an unstructured-mesh finite-volume modelling approach to assist in filling the knowledge gaps with respect to coastal circulation in remote island locations—selecting the Vanuatu and New Caledonia archipelagos as our example study site. Past limited observations and modelling studies are leveraged to construct and verify a regional/coastal ocean model based on the Finite-Volume Community Ocean Model (FVCOM). Following verification with respect to tidal behaviour, we investigate how changes in wind speed and direction, and SLR, alter coastal water levels and coastal currents. Results showed tidal residual circulation was typically associated with flow separation at headlands and islands. Trade winds had negligible effect on water levels at the coast, however, wind-residual circulation was sensitive to both wind speed and direction. Wind-residual currents were typically strongest close to coastlines. Wind residual circulation patterns were strongly influenced by Ekman flow, while island blocking, topographic steering and geostrophic currents also appear to influence current patterns. Tidal amplitudes and phases were unchanged due to SLR of up to 2 m, while maximum current speeds altered by as much as 20 cm/s within some coastal embayments. Non-linear relationships between SLR and maximum current speeds were seen at some coastal reef platform sites. Under higher sea levels, tidal residual currents altered by less than ±2 cm/s which is relatively significant given maximum tidal residual current speeds are typically below 10 cm/s. Our findings indicate that under higher sea levels, coastal processes governing sediment transport, pollutant dispersal and larval transport are likely to alter, which may have implications for coastal environments and ecosystems. Given winds influence coastal circulation and subsequent coastal processes, changes in trade winds due to climate change may act to further alter coastal processes. It is felt that the current modelling approach can be applied to other regions to help fill critical knowledge gaps.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2017 ◽  
Vol 29 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Xu-dong Zhao ◽  
Shu-xiu Liang ◽  
Zhao-chen Sun ◽  
Xi-zeng Zhao ◽  
Jia-wen Sun ◽  
...  

2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


Oceanography ◽  
2006 ◽  
Vol 19 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Changsheng Chen ◽  
Roberet Beardsley ◽  
Geoffrey Cowles

2022 ◽  
pp. 1-31

Abstract Projections of relative sea-level change (RSLC) are commonly reported at an annual mean basis. The seasonality of RSLC is often not considered, even though it may modulate the impacts of annual mean RSLC. Here, we study seasonal differences in 21st-century ocean dynamic sea-level change (DSLC, 2081-2100 minus 1995-2014) on the Northwestern European Shelf (NWES) and their drivers, using an ensemble of 33 CMIP6 models complemented with experiments performed with a regional ocean model. For the high-end emissions scenario SSP5-8.5, we find substantial seasonal differences in ensemble mean DSLC, especially in the southeastern North Sea. For example, at Esbjerg (Denmark), winter mean DSLC is on average 8.4 cm higher than summer mean DSLC. Along all coasts on the NWES, DSLC is higher in winter and spring than in summer and autumn. For the low-end emissions scenario SSP1-2.6, these seasonal differences are smaller. Our experiments indicate that the changes in winter and summer sea-level anomalies are mainly driven by regional changes in wind-stress anomalies, which are generally southwesterly and east-northeasterly over the NWES, respectively. In spring and autumn, regional wind-stress changes play a smaller role. We also show that CMIP6 models not resolving currents through the English Channel cannot accurately simulate the effect of seasonal wind-stress changes on he NWES. Our results imply that using projections of annual mean RSLC may underestimate the projected changes in extreme coastal sea levels in spring and winter. Additionally, changes in the seasonal sea-level cycle may affect groundwater dynamics and the inundation characteristics of intertidal ecosystems.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 209-219
Author(s):  
Igor P. Medvedev ◽  
Evgueni A. Kulikov ◽  
Isaac V. Fine

Abstract. The Caspian Sea is the largest enclosed basin on Earth and a unique subject for the analysis of tidal dynamics. Tides in the basin are produced directly by the tide-generating forces. Using the Princeton Ocean Model (POM), we examine details of the spatial and temporal features of the tidal dynamics in the Caspian Sea. We present tidal charts of the amplitudes and phase lags of the major tidal constituents, together with maps of the form factor, tidal range, and tidal current speed. Semi-diurnal tides in the Caspian Sea are determined by a Taylor amphidromic system with anticlockwise rotation. The largest M2 amplitude is 6 cm and is located in Türkmen Aylagy (called Turkmen Bay hereafter). For the diurnal constituents, the Absheron Peninsula separates two individual amphidromes with anticlockwise rotation in the north and in the south. The maximum K1 amplitudes (up to 0.7–0.8 cm) are located in (1) the south-eastern part of the basin, (2) Türkmenbaşy Gulf, (3) Mangyshlak Bay; and (4) Kizlyar Bay. As a result, the semi-diurnal tides prevail over diurnal tides in the Caspian Sea. The maximum tidal range, of up to 21 cm, has been found in Turkmen Bay. The strongest tidal currents have been located in the straits to the north and south of Ogurja Ada, where speeds reach 22 and 19 cm s−1, respectively. Numerical simulations of the tides using different mean sea levels (within a range of 5 m) indicate that spatial features of the Caspian Sea tides are strongly sensitive to changes in mean sea level.


Author(s):  
Stephanie Smallegan ◽  
Evan Mazur

The numerical model XBeach is used to simulate hydrodynamics and morphological change of Bay Head, NJ, which is located on a developed barrier island. Bay Head is fronted with a seawall buried beneath its dunes, and the seawall has been shown to mitigate damage due to storm surge and waves during Hurricane Sandy (2012). The objective of this study is to re-evaluate the effectiveness of the seawall in mitigating damage from a synthetic storm and sea level rise, and refine an adaptation pathway previously created for Bay Head. Utilizing the wave and surge data generated from the North Atlantic Coast Comprehensive Study, synthetic Storm 391 is simulated using XBeach. Model results show the seawall is overtopped by storm surge and waves, causing overwash and reducing dune heights. As sea levels rise, the backbarrier region of the barrier island is severely eroded and the seawall acts as a barrier preventing elevated bay water levels from freely flowing across the island and into the ocean, exacerbating sediment transport on the backbarrier. To fully evaluate the capabilities and limitations of the seawall in mitigating storm damage, additional synthetic storms need to be simulated and the results re-evaluated. This will, in turn, lead to a comprehensive, more robust adaptation pathway for Bay Head.


Sign in / Sign up

Export Citation Format

Share Document