scholarly journals Water Exchange Between the Gulf of Ob and the Kara Sea During Ice-Free Seasons: The Roles of River Discharge and Wind Forcing

2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander Osadchiev ◽  
Olga Konovalova ◽  
Alexandra Gordey

The Gulf of Ob is among the largest estuaries in the World Ocean in terms of area, watershed basin, and freshwater discharge. In this work, we describe the roles of river discharge and wind forcing on the water exchange between the Gulf of Ob and the Kara Sea during ice-free seasons. This work is based on the extensive in situ measurements performed during 10 oceanographic surveys in 2007–2019. Due to large river runoff (∼530 km3 annually) and low tidal forcing (<0.5 m/s), the estuarine processes in the Gulf of Ob during the ice-free season are generally governed by gravitational circulation. Local wind forcing significantly affects general estuarine circulation and mixing only in rare cases of strong winds (∼10 m/s). On the other hand, remote wind forcing over the central part of the Kara Sea regularly intensifies estuarine—sea water exchange. Eastern winds in the central part of the Kara Sea induce upwelling in the area adjacent to the Gulf of Ob, which increases the barotropic pressure gradient between the gulf and the open sea. As a result, intense and distant (120–170 km) inflows of saline water to the gulf occur as compared to the average conditions (50–70 km). Remote wind forcing has a far stronger impact on saltwater intrusion into the Gulf of Ob than the highly variable river discharge rate. In particular, saltwater reaches the shallow central part of the gulf only during upwelling-induced intense inflows. In the other periods (even under low discharge conditions), fresh river water occupies this area from surface to bottom. The upwelling-induced intense inflows occur on average during a quarter of days (July to October) when the gulf is free of ice. They substantially increase the productivity of phytoplankton communities in the gulf and modify the taxa ratio toward the increase of brackish water species and the decrease of freshwater species.

2021 ◽  
Author(s):  
Alexander Osadchiev ◽  
Dmitry Frey

<p><span>Discharges from the largest rivers of the World to coastal sea form sea-wide freshened surface layers which areas have order of hundred thousands of square kilometers. Large freshened surface layers (which are among the largest in the World Ocean) are located in the Kara, Laptev, and East-Siberian seas in the Eastern Arctic. </span><span>This work is focused on the structure and inter-annual variability of these freshened water masses during ice-free periods. The freshened surface layer in the Laptev and East-Siberian seas is formed mainly by deltaic rives among which the Lena River contributes about two thirds of the inflowing freshwater volume. Based on in situ measurements, we show that the area of this freshened surface layer is much greater than the area of the freshened surface layer in the neighboring Kara Sea, while the total annual freshwater discharge to the Laptev and East-Siberian seas is 1.5 times less than to the Kara Sea (mainly from the estuaries of the Ob and Yenisei rivers). This feature is caused by differences in morphology of the estuaries and deltas. Shallow and narrow channels of the Lena Delta are limitedly affected by sea water. As a result, undiluted Lena discharge inflows to sea from multiple channels and forms relatively shallow plume, as compared to the Ob-Yenisei plumes which mix with subjacent saline sea water in deep and wide estuaries. The shallow Lena plume spreads over wide area (up to 500 000 km<sup>2</sup>) in the Laptev and East-Siberian seas during and shortly after freshet period in summer and then transforms to the Laptev/East-Siberian ROFI in autumn. Area and position of the relatively shallow freshened surface layer in the Laptev and East-Siberian seas have large inter-annual variability governed by local wind forcing conditions, however, do not show any dependence on significant variability of the annual volume of discharge rate from the Lena River. The deep freshened surface layer in the Kara Sea also has distinct seasonal varability of area and position, however, is stable on inter-annual time scale.<br></span></p>


Author(s):  
Н. Демиденко ◽  
N. Demidenko

In the Mezen bay and estuaries Mezen and Kuloy can be high concentrations of mud suspension there, involving the formation at times mobile suspensions and settled mud. Within estuaries the river water is mixed with the sea water by the action of tidal motions, by waves on the sea surface and by the river discharge forcing its way to the sea. Nearly all shallow tidal estuaries, where currents exceed about 1,0m s-1 and where sand is present, have sand waves. Sand waves have a variety of cross-sectional and plan forms.


2013 ◽  
Vol 864-867 ◽  
pp. 2335-2339
Author(s):  
Ya Pan Liu ◽  
Jian Cheng Kang ◽  
Jiong Zhu ◽  
Qin Chen Han

Using salinity database of World Ocean Atlas 2009 (WOA09) issued by NOAA in 2010, refer the range of high-salinity tongue to indicate the strength about high-salinity water, from the perspective of structural changes of salinity; the water exchange through Ryukyu Islands upper 500 m have been analyzed, the results show that: due to Ryukyu Trough, currents on both sides of Ryukyu Islands occur exchange, for upper 500 m, high-salinity water in east of the Ryukyu Islands mainly invade the west waterthe Kuroshio in East China Sea; the intrusion strength is powerful from the depth of 100 m to 200 m, and the 150 m layer is the core layer of high-salinity water intrusion; the high-salinity water at the east of Ryukyu Islands invades the Kuroshio are stronger in March, May, June, September, October and November, are weaker in April and December.


Recent work has determined the depth of the Mohorovičić discontinuity at sea and has made it likely that peridotite xenoliths in basaltic volcanic rocks are samples of material from below the discontinuity. It is now possible to produce a hypothetical section showing the transition from a continent to an ocean. This section is consistent with both the seismic and gravity results. The possible reactions of the crust to changes in the total volume of sea water are dis­cussed. It seems possible that the oceans were shallower and the crust thinner in the Archean than they are now. If this were so, some features of the oldest rocks of Canada and Southern Rhodesia could be explained. Three processes are described that might lead to the formation of oceanic ridges; one of these involves tension, one compression and the other quiet tectonic conditions. It is likely that not all ridges are formed in the same way. It is possible that serpentization of olivine by water rising from the interior of the earth plays an important part in producing changes of level in the ocean floor and anomalies in heat flow. Finally, a method of reducing gravity observations at sea is discussed.


2000 ◽  
Vol 89 (3) ◽  
pp. 550-562 ◽  
Author(s):  
Leonid Polyak ◽  
Mikhail Levitan ◽  
Valery Gataullin ◽  
Tatiana Khusid ◽  
Valery Mikhailov ◽  
...  

1976 ◽  
Vol 64 (2) ◽  
pp. 369-378 ◽  
Author(s):  
K. W. Beyenbach ◽  
L. B. Kirschner

1. The assumption that (3H) methoxy inulin, (14C) polyethylene glycol (PEG) and (125) iothalamate (glofil) are reliable volume and glomerular markers in teleosts was tested. 2. PEG occupied smaller volumes than inulin and glofil in sea-water-adapted Salmo gairdneri. Ureteral clearances of PEG were about 22% higher than those of inulin and glofil, and urine-to-plasma ratios were significantly greater for PEG than for the other two markers. 3. After introduction into the urinary bladder the three macro-molecules appeared in the plasma, PEG at the lowest rates. 4. These observations indicate that mammalian glomerular markers can penetrate the bladder and possibly the ureters and renal tubules. Therefore, their clearances may not give a true measure of glomerular filtration rates in teleosts.


Author(s):  
Kevin D. Friedland ◽  
John R. Moisan ◽  
Aurore A. Maureaud ◽  
Damian C. Brady ◽  
Andrew J. Davies ◽  
...  

Large marine ecosystems (LMEs) are highly productive regions of the world ocean under anthropogenic pressures; we analyzed trends in sea surface temperature (SST), cloud fraction (CF), and chlorophyll concentration (CHL) over the period 1998–2019. Trends in these parameters within LMEs diverged from the world ocean. SST and CF inside LMEs increased at greater rates inside LMEs, whereas CHL decreased at a greater rates. CHL declined in 86% of all LMEs and of those trends, 70% were statistically significant. Complementary analyses suggest phytoplankton functional types within LMEs have also diverged from those characteristic of the world ocean, most notably, the contribution of diatoms and dinoflagellates, which have declined within LMEs. LMEs appear to be warming rapidly and receiving less solar radiation than the world ocean, which may be contributing to changes at the base of the food chain. Despite increased fishing effort, fishery yields in LMEs have not increased, pointing to limitations related to productivity. These changes raise concerns over the stability of these ecosystems and their continued ability to support services to human populations.


2020 ◽  
Vol 5 (1) ◽  
pp. 56-60
Author(s):  
Wildan Gunawan ◽  
Suyitno Muslim ◽  
Imam Arif Rahardjo

This research is aimed to understand the effects of  rain fall and discharge rate towards hydro electric power plant productivity (case study at Kracak Sub Unit HPP, Bogor Regency Jawa Barat). Multiple regression tecnique analysis is used as research method with quantitative approach for describing the effects of rain fall and discharge rate towards hydro electric energy productivity. Based on Sub Unit PLTA Kracak during a highest down pour in June 2018 has gained electrical power about 173,583 kWh for 15,84 mm rain fall and the lowest rain fall in July 2018 is 0,86 mm only obtain 49,772 kWh electrical power with the average rain fall record in three stations is 8,9592 mm. Mean while, for the highest river discharge rate happened in February is 10,08 m3/detik which produce 198,296 kWh electrical power and the lowest in June that only gained 3,53 m3/detik which produce 49,772 kWh electrical power with the average of river discharge rate in 2018 is only 7,9858 m3/detik. The average of electrical power it self is only 156,0105 kWh for 8,9592 mm of rainfall and 7,9858 m3/detik river discharge rate record in 2018. The conclusion oh this research is the discharge rate in headwaters area is affected by rainfall intensity, but not necessarily affected to hydro electric energy productivity.   ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh curah hujan dan debit air terhadap produktivitas energi listrik yang dihasilkan pada pembangkit listrik tenaga air (Studi Kasus: Sub Unit PLTA Kracak, Kabupaten Bogor Jawa Barat). Metode yang digunakan dalam penelitian ini adalah metode deskriptif dengan pendekatan kuantitatif teknik analisis data regresi berganda untuk mendiskripsikan data penelitian curah hujan dan debit air terhadap produktivitas energi listrik yang dihasilkan. Berdasarkan data hasil penelitian yang diperoleh di Sub Unit PLTA Kracak data curah hujan tertinggi pada tahun 2018 di Bulan Juni sebesar 15,84 mm dapat menghasilkan energi listrik sebesar 173,593 kWh dan terendah di Bulan Juli sebesar 0,86 mm dapat menghasilkan energi listrik sebesar  49,772 kWh dengan rata-rata pertahun 2018 yaitu sebesar 8,9592 mm di tiga stasiun. Sedangkan data debit air pada tahun 2018 tertinggi di Bulan Februari sebesar 10,08 m3/detik dapat menghasilkan energi listrik sebesar 198,296 kWh dan terendah di Bulan Juli sebesar 3,53 m3/detik dapat menghasilkan energi listrik sebesar 49,772 dengan rata-rata pertahun 2018 debit air sebesar 7,9858 m3/detik. Dengan rata-rata curah hujan 8,9592 mm dan debit air 7,9858 m3/detik dapat menghasilkan energi listrik rata-rata pertahun 2018 sebesar 156,0105 kWh selama tahun 2018. Dapat disimpulkan curah hujan tidak berpengaruh langsung terhadap produktivitas energi listrik yang dihasilkan sedangkan debit air berpengaruh terhadap produktivitas energi listrik.


2019 ◽  
Vol 59 (6) ◽  
pp. 928-938
Author(s):  
E. O. Dubinina ◽  
S. A. Kossova ◽  
A. Yu. Miroshnikov

Three-year monitoring of isotope (D, 18О) parameters in the waters of the Sedov and Tsivolki bays (Novaya Zemlya) was carried out. The fresh waters of the bays are originated from several sources (continental runoff, precipitations, and waters going from the archipelago). The freshening extent and sources of fresh waters are different at the different depth. The D and 18О values varies only in the surface waters which contains more than 30% of fresh component. In 2015 the surface waters of Sedov bay were represented by Ob river waters, and the surface waters of Tsivolki bay were enriched by the runoff from Novaya Zemlya. Deep waters in both bays show signs of desalination by high latitude atmospheric precipitations. These waters can be transferred to the southeast coast of Novaya Zemlya through the trenches of St. Anne and Voronin. The difference in the freshening mechanisms of the waters of Sedov and Tsivolka bays is determined by different bottom morphologies and different degrees of free water exchange with the Kara Sea.


2018 ◽  
Vol 76 (5) ◽  
pp. 163-215 ◽  
Author(s):  
Elizabeth J. Wallace ◽  
Lev B. Looney ◽  
Donglai Gong

Increasing attention is being placed on the regional impact of climate change. This study focuses on the decadal scale variabilities of temperature and salinity in the Mid-Atlantic Bight (MAB), Georges Bank (GB), and Gulf of Maine (GOM) from 1977 to 2016 using hydrographic survey data from the National Oceanic and Atmospheric Administration (NOAA) Northeast Fisheries Science Center. The MAB (as defined by the shelf regions from Cape Hatteras to Cape Cod) experienced warming rates of 0.57 °C per decade during the Winter/Spring season (Jan–Apr) and 0.47 °C per decade during the Fall/Winter season (Sep–Dec). The GOM and GB, on the other hand, warmed at approximately half the rate of the MAB over the same time span (1977–2016). We found that rates of warming vary on decadal time scales. From 1977 to 1999, significant temperature increases (> 0.6 °C/decade) were found in the southern regions of the MAB during the Winter/Spring season. During the same period, significant freshening (stronger than– 0.2/decade) was found in GB and the northern regions of the MAB during the Winter/Spring and Summer seasons. From 1999 to 2016, on the other hand, we found no significant trends in temperature and few significant trends in salinity with the exceptions of some northern MAB regions showing significant salting. Interannual variability in shelf salinity can in part be attributed to river discharge variability in the Hudson River and Chesapeake Bay. However, decadal scale change in shelf salinity cannot be attributed to changes in river discharge as there were no significant decadal scale changes in river outflow. Variability in along-shelf freshwater transport and saline intrusions from offshore were the likely drivers of long-term changes in MAB shelf-salinity.


Sign in / Sign up

Export Citation Format

Share Document