scholarly journals Toward Universal Photodynamic Coatings for Infection Control

2021 ◽  
Vol 8 ◽  
Author(s):  
C. Roland Ghareeb ◽  
Bharadwaja S. T. Peddinti ◽  
Samantha C. Kisthardt ◽  
Frank Scholle ◽  
Richard J. Spontak ◽  
...  

The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N-methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245737
Author(s):  
Aurimas Bukauskas ◽  
Antiopi Koronaki ◽  
Ting-Uei Lee ◽  
Daniel Ott ◽  
M. Wesam Al Asali ◽  
...  

The COVID-19 pandemic has created enormous global demand for personal protective equipment (PPE). Face shields are an important component of PPE for front-line workers in the context of the COVID-19 pandemic, providing protection of the face from splashes and sprays of virus-containing fluids. Existing face shield designs and manufacturing procedures may not allow for production and distribution of face shields in sufficient volume to meet global demand, particularly in Low and Middle-Income countries. This paper presents a simple, fast, and cost-effective curved-crease origami technique for transforming flat sheets of flexible plastic material into face shields for infection control. It is further shown that the design could be produced using a variety of manufacturing methods, ranging from manual techniques to high-volume die-cutting and creasing. This demonstrates the potential for the design to be applied in a variety of contexts depending on available materials, manufacturing capabilities and labour. An easily implemented and flexible physical-digital parametric design methodology for rapidly exploring and refining variations on the design is presented, potentially allowing others to adapt the design to accommodate a wide range of ergonomic and protection requirements.


2020 ◽  
Vol 16 ◽  
Author(s):  
Diogo L. R. Novo ◽  
Priscila T. Scaglioni ◽  
Rodrigo M. Pereira ◽  
Filipe S. Rondan ◽  
Gilberto S. Coelho Junior ◽  
...  

Background: Conventional analytical methods for phosphorus and sulfur determination in several matrices present normally analytical challenges regarding inaccuracy, detectability and waste generation. Objective: The main objective is proposing a green and feasible analytical method for phosphorus and sulfur determination in animal feed. Methods: Synergic effect between microwave and ultraviolet radiations during sample preparation was evaluated for the first time for the animal feed digestion associated with further phosphorus and sulfur determination by ion chromatography with conductivity detection. Dissolved carbon and residual acidity in final digests were used for the proposed method assessment. Phosphorus and sulfur values were compared with those obtained using conventional microwave-assisted wet digestion in closed vessels associated with inductively coupled plasma optical emission spectrometry and with those obtained using Association of Official Analytical Chemists International official method. Recovery tests and certified reference material analysis were performed. Animal feeds were analyzed using the proposed method. Results: Sample masses of 500 mg were efficiently digested using only 2 mol L -1 HNO3. The results obtained by the proposed method was not differing significantly (p > 0.05) from those obtained by the conventional and official methods. Suitable recoveries (from 94 to 99%), agreement with certified values (101 and 104%) and relative standard deviations (< 8%) were achieved. Phosphorus and sulfur content in commercial products varied in a wide range (P: 5,873 to 28,387 mg kg-1 and S: 2,165 to 4,501 mg kg-1 ). Conclusion: The proposed method is a green, safe, accurate, precise and sensitive alternative for animal feed quality control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Yan ◽  
Chun-lian Wang ◽  
Steffen Mischke ◽  
Jiu-yi Wang ◽  
Li-jian Shen ◽  
...  

AbstractMajor, trace and rare earth element (REE) geochemistry of the late Cretaceous lower Zhoutian Formation from the Jitai Basin of Southeast China were measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis to infer the provenance of the sediments and to reconstruct the palaeoenvironment and palaeoclimate. The wide range of Sr/Cu ratios point to a fluctuating palaeoclimate, and the negative correlation between the FeO/MnO and Al2O3/MgO ratios and the Sr/Cu ratio indicates that the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin can be divided into two parts. The lower part experienced two cooling periods, whilst the upper part was dominated by warm-humid climate. Mostly corresponding trends of the B/Ga, Sr/Ba and Sr/Cu ratios show that the salinity changed consistently with the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin. During the lower part, the salinity changed from salt water to fresh/brackish water. In the upper part, water was mainly fresh/brackish, and there were many changes from fresh/brackish water to salt water. The relatively stable Ni/Co, V/Cr, V/(V + Ni) and Ce/Ce* data indicate a long period of oxic conditions. The La-Th-Sc, Th-Sc-Zr/10 and La/Th-Hf data of the silt- and sandstones of the lower Zhoutian Formation show that its provenance was mainly a mixture of felsic upper crust sediments and older sedimentary rocks.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3444
Author(s):  
Joji Abraham ◽  
Kim Dowling ◽  
Singarayer Florentine

Pathogen transfer and infection in the built environment are globally significant events, leading to the spread of disease and an increase in subsequent morbidity and mortality rates. There are numerous strategies followed in healthcare facilities to minimize pathogen transfer, but complete infection control has not, as yet, been achieved. However, based on traditional use in many cultures, the introduction of copper products and surfaces to significantly and positively retard pathogen transmission invites further investigation. For example, many microbes are rendered unviable upon contact exposure to copper or copper alloys, either immediately or within a short time. In addition, many disease-causing bacteria such as E. coli O157:H7, hospital superbugs, and several viruses (including SARS-CoV-2) are also susceptible to exposure to copper surfaces. It is thus suggested that replacing common touch surfaces in healthcare facilities, food industries, and public places (including public transport) with copper or alloys of copper may substantially contribute to limiting transmission. Subsequent hospital admissions and mortality rates will consequently be lowered, with a concomitant saving of lives and considerable levels of resources. This consideration is very significant in times of the COVID-19 pandemic and the upcoming epidemics, as it is becoming clear that all forms of possible infection control measures should be practiced in order to protect community well-being and promote healthy outcomes.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Jongwon Lee ◽  
Kilsun Roh ◽  
Sung-Kyu Lim ◽  
Youngsu Kim

This is the first demonstration of sidewall slope control of InP via holes with an etch depth of more than 10 μm for 3D integration. The process for the InP via holes utilizes a common SiO2 layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees; this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jarosław Mikuła ◽  
Daniel Pakuła ◽  
Ludwina Żukowska ◽  
Klaudiusz Gołombek ◽  
Antonín Kříž

The article includes research results for the functional properties achieved for a wide range of sintered tool materials, including sintered carbides, cermets and three types of Al2O3 oxide tool ceramics ((Al2O3 + ZrO2, Al2O3 + TiC and Al2O3 + SiC(w)) with (Ti,Al)N coating deposited in the cathodic arc evaporation (CAE-PVD) method and comparison with uncoated tool materials. For all coated samples, a uniform wear pattern on tool shank was observed during metallographic analysis. Based on the scanning electron microscope (SEM) metallographic analysis, it was found that the most common types of tribological defects identified in tested materials are: mechanical defects and abrasive wear of the tool side, crater formation on the tool face, cracks on the tool side, chipping on the cutting edge and built-up edge from chip fragments. Deposition of (Ti,Al)N coating on all tested substrates increases the wear resistance and also limits the exceeding of critical levels of permanent stresses. It even increases the tool life many times over. Such a significant increase in tool life results, among other things, from a large increase in microhardness of PVD coated materials compared to uncoated samples, increased resistance to thermal and chemical abrasion, improved chip formation and removal process conditions. Use of hard coatings applied to sintered tool materials is considered to be one of the most important achievements in improving the functional properties of cutting tools and can still be developed by improving the coating structure solutions (sorted and nanocrystalline structures) and extending the range of coating applications (Ti,Al)N in a variety of substrates.


2011 ◽  
Vol 48 (2) ◽  
pp. 515-541 ◽  
Author(s):  
Yvon Lemieux ◽  
Thomas Hadlari ◽  
Antonio Simonetti

U–Pb ages have been determined on detrital zircons from the Upper Devonian Imperial Formation and Upper Devonian – Lower Carboniferous Tuttle Formation of the northern Canadian Cordilleran miogeocline using laser ablation – multicollector – inductively coupled plasma – mass spectrometry. The results provide insights into mid-Paleozoic sediment dispersal in, and paleogeography of, the northern Canadian Cordillera. The Imperial Formation yielded a wide range of detrital zircon dates; one sample yielded dominant peaks at 1130, 1660, and 1860 Ma, with smaller mid-Paleozoic (∼430 Ma), Neoproterozoic, and Archean populations. The easternmost Imperial Formation sample yielded predominantly late Neoproterozoic – Cambrian zircons between 500 and 700 Ma, with lesser Mesoproterozoic and older populations. The age spectra suggest that the samples were largely derived from an extensive region of northwestern Laurentia, including the Canadian Shield, igneous and sedimentary provinces of Canada’s Arctic Islands, and possibly the northern Yukon. The presence of late Neoproterozoic – Cambrian zircon, absent from the Laurentian magmatic record, indicate that a number of grains were likely derived from an exotic source region, possibly including Baltica, Siberia, or Arctic Alaska – Chukotka. In contrast, zircon grains from the Tuttle Formation show a well-defined middle Paleoproterozoic population with dominant relative probability peaks between 1850 and 1950 Ma. Additional populations in the Tuttle Formation are mid-Paleozoic (∼430 Ma), Mesoproterozoic (1000–1600 Ma), and earlier Paleoproterozoic and Archean ages (>2000 Ma). These data lend support to the hypothesis that the influx of sediments of northerly derivation that supplied the northern miogeocline in Late Devonian time underwent an abrupt shift to a source of predominantly Laurentian affinity by the Mississippian.


2020 ◽  
Vol 41 (S1) ◽  
pp. s69-s70
Author(s):  
Angie Dains ◽  
Michael Edmond ◽  
Daniel Diekema ◽  
Stephanie Holley ◽  
Oluchi Abosi ◽  
...  

Background: Including infection preventionists (IPs) in hospital design, construction, and renovation projects is important. According to the Joint Commission, “Infection control oversights during building design or renovations commonly result in regulatory problems, millions lost and even patient deaths.” We evaluated the number of active major construction projects at our 800-bed hospital with 6.0 IP FTEs and the IP time required for oversight. Methods: We reviewed construction records from October 2018 through October 2019. We classified projects as active if any construction occurred during the study period. We describe the types of projects: inpatient, outpatient, non–patient care, and the potential impact to patient health through infection control risk assessments (ICRA). ICRAs were classified as class I (non–patient-care area and minimal construction activity), class II (patients are not likely to be in the area and work is small scale), class III (patient care area and work requires demolition that generates dust), and class IV (any area requiring environmental precautions). We calculated the time spent visiting construction sites and in design meetings. Results: During October 2018–October 2019, there were 51 active construction projects with an average of 15 active sites per week. These sites included a wide range of projects from a new bone marrow transplant unit, labor and delivery expansion and renovation, space conversion to an inpatient unit to a project for multiple air handler replacements. All 51 projects were classified as class III or class IV. We visited, on average, 4 construction sites each week for 30 minutes per site, leaving 11 sites unobserved due to time constraints. We spent an average of 120 minutes weekly, but 450 minutes would have been required to observe all 15 sites. Yearly, the required hours to observe these active construction sites once weekly would be 390 hours. In addition to the observational hours, 124 hours were spent in design meetings alone, not considering the preparation time and follow-up required for these meetings. Conclusions: In a large academic medical center, IPs had time available to visit only a quarter of active projects on an ongoing basis. Increasing dedicated IP time in construction projects is essential to mitigating infection control risks in large hospitals.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document