scholarly journals SARS-CoV2 Infection and the Importance of Potassium Balance

2021 ◽  
Vol 8 ◽  
Author(s):  
Helen C. Causton

SARS-CoV2 infection results in a range of symptoms from mild pneumonia to cardiac arrhythmias, hyperactivation of the immune response, systemic organ failure and death. However, the mechanism of action has been hard to establish. Analysis of symptoms associated with COVID-19, the activity of repurposed drugs associated with lower death rates or antiviral activity in vitro and a small number of studies describing interventions, point to the importance of electrolyte, and particularly potassium, homeostasis at both the cellular, and systemic level. Elevated urinary loss of potassium is associated with disease severity, and the response to electrolyte replenishment correlates with progression toward recovery. These findings suggest possible diagnostic opportunities and therapeutic interventions. They provide insights into comorbidities and mechanisms associated with infection by SARS-CoV2 and other RNA viruses that target the ACE2 receptor, and/or activate cytokine-mediated immune responses in a potassium-dependent manner.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
S. Viganò ◽  
M. Perreau ◽  
G. Pantaleo ◽  
A. Harari

The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences bothin vitroandin vivosuggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Yang ◽  
Yiming Yang ◽  
Huahua Fan ◽  
Hejian Zou

TGF-β-induced regulatory T cells (iTregs) retain Foxp3 expression and immune-suppressive activity in collagen-induced arthritis (CIA). However, the mechanisms whereby transferred iTregs suppress immune responses, particularly the interplay between iTregs and dendritic cells (DCs)in vivo, remain incompletely understood. In this study, we found that after treatment with iTregs, splenic CD11c+DCs, termed “DCiTreg,” expressed tolerogenic phenotypes, secreted high levels of IL-10, TGF-β, and IDO, and showed potent immunosuppressive activityin vitro. After reinfusion with DCiTreg, marked antiarthritic activity improved clinical scores and histological end-points were observed. The serological levels of inflammatory cytokines and anti-CII antibodies were low and TGF-βproduction was high in the DCiTreg-treated group. DCiTregalso induced new iTregsin vivo. Moreover, the inhibitory activity of DCiTregon CIA was lost following pretreatment with the inhibitor of indoleamine 2,3-dioxygenase (IDO). Collectively, these findings suggest that transferred iTregs could induce tolerogenic characteristics in splenic DCs and these cells could effectively dampen CIA in an IDO-dependent manner. Thus, the potential therapeutic effects of iTregs in CIA are likely maintained through the generation of tolerogenic DCsin vivo.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7461
Author(s):  
Claire K. Holley ◽  
Edward Cedrone ◽  
Duncan Donohue ◽  
Barry W. Neun ◽  
Daniela Verthelyi ◽  
...  

Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product’s distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


Oncogene ◽  
2020 ◽  
Vol 39 (44) ◽  
pp. 6841-6855 ◽  
Author(s):  
Christina Jessen ◽  
Julia K. C. Kreß ◽  
Apoorva Baluapuri ◽  
Anita Hufnagel ◽  
Werner Schmitz ◽  
...  

AbstractThe transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H2O2 or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.


Rheumatology ◽  
2019 ◽  
Vol 58 (11) ◽  
pp. 2051-2060 ◽  
Author(s):  
Giovanni Almanzar ◽  
Felix Kienle ◽  
Marc Schmalzing ◽  
Anna Maas ◽  
Hans-Peter Tony ◽  
...  

AbstractObjectiveRA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response.MethodsThe effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro.ResultsTofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed.ConclusionThis study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 82 ◽  
Author(s):  
Elena López-Gil ◽  
Sandra Moreno ◽  
Javier Ortego ◽  
Belén Borrego ◽  
Gema Lorenzo ◽  
...  

In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.


Sign in / Sign up

Export Citation Format

Share Document