scholarly journals Impact of Cumulative Fluid Balance During Continuous Renal Replacement Therapy on Mortality in Patients With Septic Acute Kidney Injury: A Retrospective Cohort Study

2021 ◽  
Vol 8 ◽  
Author(s):  
Jin Lin ◽  
Hai Zhou Zhuang ◽  
De Yuan Zhi ◽  
Zhili Qi ◽  
Jing Bai ◽  
...  

Background: The clinicians often use continuous renal replacement therapy (CRRT) for the fluid management of patients with septic acute kidney injury (AKI). However, there is limited knowledge of the effects of changes in fluid balance (FB) on CRRT and its association with outcomes in patients with septic AKI.Objective: This study aimed to determine the association of cumulative FB (CFB) during treatment with 28-day all-cause mortality in the patients with septic AKI who require CRRT.Methods: This retrospective observational study examined patients who received CRRT due to septic AKI in a mixed intensive care unit (ICU) of a tertiary teaching hospital between January 2015 and December 2018. The patients were divided into three groups—negative FB, even FB, and positive FB—based on the CFB during CRRT. The primary outcome was 28-day all-cause mortality.Results: We examined 227 eligible patients and the mean age was 62.4 ± 18.3 years. The even FB group had a significantly lower 28-day mortality (43.0%, p = 0.007) than the positive FB group (72.7%) and the negative FB group (54.8%). The unadjusted and adjusted Cox regression models indicated that the positive FB group had an increased risk for 28-day all-cause mortality relative to the even FB group. A restricted cubic splines model indicated a J-shaped association between the CFB and 28-day all-cause mortality in the unadjusted model.Conclusion: Among the critically ill patients with septic AKI who require CRRT, those with positive FB had a higher mortality rate than those with even FB.

Shock ◽  
2016 ◽  
Vol 45 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Kengo Mayumi ◽  
Tetsushi Yamashita ◽  
Yoshifumi Hamasaki ◽  
Eisei Noiri ◽  
Masaomi Nangaku ◽  
...  

Author(s):  
Arvind Santhanakrishnan ◽  
Trent Nestle ◽  
Brian Moore ◽  
Ajit P. Yoganathan ◽  
Matthew L. Paden

The incidence of acute kidney injury (AKI) is commonly seen in critically ill children, the origins of which may be traced to a wide range of conditions such as inborn errors of metabolism, sepsis, congenital heart defects, bone marrow and organ transplantation, and to a lesser extent from multiple organ dysfunction syndrome (MODS) [1]. It is vital to provide a form of fluid and electrolyte clearance in these patients until native renal function improves. Nearly 3,600 critically ill children per year with acute kidney injury receive life-saving continuous renal replacement therapy (CRRT) in the United States. However, there is no CRRT device approved by the Food and Drug Administration for use in pediatric patients. Thus, clinicians unsafely adapt adult CRRT devices for use in the pediatric patients due to lack of safer alternatives. Complications observed with using adult adapted CRRT devices in children include hypotension, hemorrhage, thrombosis, temperature instability, inaccurate fluid balance between ultrafiltrate (UF) removed from and replacement fluid (RF) delivered to the patient, electrolyte disorders, and alteration of drug clearance. This research addresses this unmet clinical need through the design, mechanical and biological characterization of a pediatric specific Kidney Injury and Dysfunction Support (KIDS) CRRT device that provides high accuracy in fluid balance, reduces extracorporeal blood volume, and eliminates other problems associated with using adapted adult CRRT devices in children.


Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Jong Hyun Jhee ◽  
Hye Ah Lee ◽  
Seonmi Kim ◽  
Youn Kyung Kee ◽  
Ji Eun Lee ◽  
...  

Abstract Background The interactive effect of cumulative input and output on achieving optimal fluid balance has not been well elucidated in patients with acute kidney injury (AKI) requiring continuous renal replacement therapy (CRRT). This study evaluated the interrelation of fluid components with mortality in patients with AKI requiring CRRT. Methods This is a retrospective observational study conducted with a total of 258 patients who were treated with CRRT due to AKI between 2016 and 2018 in the intensive care unit of Ewha Womans University Mokdong Hospital. The amounts of fluid input and output were assessed at 24-h and 72-h from the initiation of CRRT. The study endpoints were 7- and 28-day all-cause mortality. Results The mean patient age was 64.7 ± 15.8 years, and 165 (64.0%) patients were male. During the follow-up, 7- and 28-day mortalities were observed in 120 (46.5%) and 157 (60.9%) cases. The patients were stratified into two groups (28-day survivors vs. non-survivors), and the cumulative fluid balances (CFBs) at 24 h and 72 h were significantly higher in the 28-day non-survivors compared with the survivors. The increase in 24-h and 72-h CFB was significantly associated with an increase in 7- and 28-day mortality risks. To examine the interactive effect of cumulative input or output on the impact of CFB on mortality, we also stratified patients into three groups based on the tertile of 24-h and 72-h cumulative input or output. The increases in 24-h and 72-h CFBs were still significantly related to the increases in 7-day and 28-day mortality, irrespective of the cumulative input. However, we did not find significant associations between increase in 24-h and 72-h CFB and increase in mortality risk in the groups according to cumulative output tertile. Conclusions The impact of cumulative fluid balance on mortality might be more dependent on cumulative output. The physicians need to decrease the cumulative fluid balance of CRRT patients as much as possible and consider increasing patient removal.


2018 ◽  
Vol 46 (4) ◽  
pp. 326-331 ◽  
Author(s):  
Jingxiao Zhang ◽  
Jiakun Tian ◽  
Hongzhi Sun ◽  
Kumar Digvijay ◽  
Mauro Neri ◽  
...  

Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit. As the most common treatment of septic AKI, it is believed that continuous renal replacement therapy (CRRT) can not only maintain the water balance and excrete the metabolic products but also regulate the inflammation and promote kidney recovery. CRRT can remove the inflammatory cytokines to regulate the metabolic adaption in kidney and restore the kidney recovery to protect the kidney in septic AKI. Second, CRRT can provide extra energy supply in septic AKI to improve the kidney energy balance in septic AKI. Third, the anticoagulant used in CRRT also regulates the inflammation in septic AKI. CRRT is not only a treatment to deal with the water balance and metabolic products, but also a method to regulate the inflammation in septic AKI. Video Journal Club ‘Cappuccino with Claudio Ronco’ at https://www.karger.com/Journal/ArticleNews/223997?​sponsor=52.


2021 ◽  
Vol 10 (16) ◽  
pp. 3660
Author(s):  
Jeong-Hoon Lim ◽  
Yena Jeon ◽  
Ji-Sun Ahn ◽  
Sejoong Kim ◽  
Dong Ki Kim ◽  
...  

Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine. This study evaluated the association between GDF-15 and in-hospital mortality among patients with severe acute kidney injury (AKI) requiring continuous renal replacement therapy (CRRT). Among the multicenter prospective CRRT cohort between 2017 and 2019, 66 patients whose blood sample was available were analyzed. Patients were divided into three groups according to the GDF-15 concentrations. The median GDF-15 level was 7865.5 pg/mL (496.9 pg/mL in the healthy control patients). Baseline characteristics were not different among tertile groups except the severity scores and serum lactate level, which were higher in the third tertile. After adjusting for confounding factors, the patients with higher GDF-15 had significantly increased risk of mortality (second tertile: adjusted hazards ratio [aHR], 3.67; 95% confidence interval [CI], 1.05–12.76; p = 0.041; third tertile: aHR, 6.81; 95% CI, 1.98–23.44; p = 0.002). Furthermore, GDF-15 predicted in-hospital mortality (area under the curve, 0.710; 95% CI, 0.585–0.815) better than APACHE II and SOFA scores. Serum GDF-15 concentration was elevated in AKI patients requiring CRRT, higher in more severe patients. GDF-15 is a better independent predictor for in-hospital mortality of critically ill AKI patients than the traditional risk scoring system such as APACHE II and SOFA scores.


Sign in / Sign up

Export Citation Format

Share Document