scholarly journals Overview of the Diversity, Phylogeny and Biogeography of Strombidiid Oligotrich Ciliates (Protista, Ciliophora), With a Brief Revision and a Key to the Known Genera

2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Song ◽  
Dapeng Xu ◽  
Xiao Chen ◽  
Alan Warren ◽  
Mann Kyoon Shin ◽  
...  

Strombidiids are common free-living ciliates that have colonized coastal and open oceanic waters across the world. In recent years, numerous new taxa and gene sequences of strombidiids have been reported, revealing a large diversity of both their morphologic and genetic features. Here, we compare the taxonomic characters of all genera in the family Strombidiidae, provide a key to their identification, and investigate their molecular phylogeny. In addition, we analyze their regional distribution based on faunal data accumulated in China and attempt to infer their global distribution based on SSU rRNA gene sequence data. The current work revises the systematics of strombidiids based on morphologic, phylogenetic, and biogeographic evidence and provides a genus-level review of marine strombidiids.

2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2453-2458 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yanliu Yang ◽  
Shuang Wang ◽  
Zhilei Sun ◽  
Kailin Jiao

A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated strain F15T, was isolated from a deep-sea sediment of the western Pacific Ocean. The temperature, pH and NaCl ranges for growth were 4–50 °C, pH 6–11 and 0–10 % (w/v), respectively. Strain F15T showed the highest 16S rRNA gene sequence similarity to Sagittula stellata E-37T (96.4 %), followed by Ponticoccus litoralis CL-GR66T (96.4 %), Antarctobacter heliothermus EL-219T (96.3 %) and Thalassococcus lentus YCS-24T (96.0 %). Phylogenetic analysis based on 16S rRNA gene sequence data showed that strain F15T formed a lineage within the family Rhodobacteraceae of the class Alphaproteobacteria. The polar lipid profile of strain F15T comprised significant amounts of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid and one unidentified phospholipid. The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c, 40.2 %), anteiso-C15 : 0 (30.4 %) and anteiso-C17 : 0 (9.7 %). The genomic DNA G+C content of strain F15T was 60.2 mol% and the major respiratory quinone was Q-10. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain F15T is considered to represent a novel species of a new genus within the family Rhodobacteraceae, for which the name Alkalimicrobium pacificum gen. nov., sp. nov. is proposed. The type strain is F15T ( = LMG 28107T = JCM 19851T = CGMCC 1.12763T = MCCC 1A09948T).


Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Cindy Snauwaert ◽  
Marc Vancanneyt ◽  
...  

Three novel heterotrophic, Gram-negative, yellow-pigmented, aerobic, gliding, oxidase- and catalase-positive bacteria were isolated from algae collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied represented members of the family Flavobacteriaceae and showed 93·5–93·8 % similarity with their closest relative, Psychroserpens burtonensis. The DNA G+C content of the strains was 34–37 mol%. The major respiratory quinone was MK-6. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1, iso-C16 : 0-3OH and iso-C17 : 0-3OH. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the newly described bacteria have been assigned to the new genus Winogradskyella gen. nov., as Winogradskyella thalassocola sp. nov. (type strain, KMM 3907T=KCTC 12221T=LMG 22492T=DSM 15363T), Winogradskyella epiphytica sp. nov. (type strain, KMM 3906T=KCTC 12220T=LMG 22491T=CCUG 47091T) and Winogradskyella eximia sp. nov. (type strain, KMM 3944T (=KCTC 12219T=LMG 22474T).


1999 ◽  
Vol 35 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Joon-seok Chae ◽  
Suryakant D. Waghela ◽  
Thomas M. Craig ◽  
Alan A. Kocan ◽  
Gerald G. Wagner ◽  
...  

2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 214-219 ◽  
Author(s):  
Lei Dong ◽  
Hong Ming ◽  
En-Min Zhou ◽  
Yi-Rui Yin ◽  
Lan Liu ◽  
...  

A slightly thermophilic, Gram-staining-negative and strictly aerobic bacteria, designated strain YIM 78141T, was isolated from a sediment sample collected at Hehua hot spring, Tengchong, Yunnan province, south-west China. Cells of the strain were short-rod-shaped and colonies were yellowish and circular. The strain grew at pH 6.0–10.0 (optimum, pH 8.0–9.0) and 10–55 °C (optimum, 40–50 °C). Phylogenetic analyses based on 16S rRNA gene sequence comparison demonstrated that strain YIM 78141T belongs to the family Neisseriaceae , and strain YIM 78141T also showed low levels of 16S rRNA gene sequence similarity (below 93.4 %) with all other genera in this family. The only quinone was ubiquinone 8 and the genomic DNA G+C content was 67.3 mol%. Major fatty acids (>5 %) were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phospholipids of unknown structure containing aminoglycophospholipid and three unidentified polar lipids. On the basis of the morphological, physiological and biochemical characteristics as well as genotypic data, this strain should be classified as a representative of a novel genus and species of the family Neisseriaceae , for which the name Crenobacter luteus gen. nov., sp. nov. is proposed. The type strain is YIM 78141T ( = BCRC 80650T = KCTC 32558T = DSM 27258T).


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


Author(s):  
Shuhei Yabe ◽  
Yoshifumi Aiba ◽  
Yasuteru Sakai ◽  
Masaru Hazaka ◽  
Akira Yokota

A thermophilic, Gram-positive bacterium that formed a branched vegetative mycelium was isolated from compost. The strain, designated I3T, grew at temperatures between 35 and 62 °C, with optimum growth at 50–55 °C. No growth was observed below 29 °C or above 65 °C. The pH range for growth was 5.7–10.0, the pH for optimum growth was 7.0 and no growth was observed below pH 5.6 or above pH 10.8. The DNA G+C content of strain I3T was 69.2 mol%. The major fatty acids found were C15 : 0 iso (14.2 %), C15 : 0 anteiso (12.1 %), C17 : 0 iso (16.3 %) and C17 : 0 anteiso (21.7 %). The major menaquinones were MK-9(H4), MK-10(H4) and MK-11(H4). The cell wall contained glutamic acid, glycine, alanine and ll-diaminopimelic acid in a molar ratio of 1.0 : 3.9 : 0.6 : 0.5. The polar lipids consisted of ninhydrin-positive phosphoglycolipids, phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. The cell-wall sugars were rhamnose and arabinose. 16S rRNA gene sequence analysis assigned this actinomycete to the family Nocardioidaceae, but its 16S rRNA gene sequence shared no more than 95.5 % similarity with those of other members of the family. The chemotaxonomic and phenotypic characteristics of strain I3T differed in some respects from those of members of the genus Actinopolymorpha, the most closely related genus. Therefore, strain I3T represents a novel species in a new genus of the family Nocardioidaceae, for which the name Thermasporomyces composti gen. nov., sp. nov. is proposed. The type strain of the type species is I3T (=JCM 16421T=DSM 22891T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Nupur ◽  
Naga Radha Srinivas Tanuku ◽  
Takaichi Shinichi ◽  
Anil Kumar Pinnaka

A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria. 16S rRNA gene sequence analysis indicated that strain AK40T was closely related to Phaeochromatium fluminis, with 95.2 % pairwise sequence similarity to the type strain; sequence similarity to strains of other species of the family was 90.8–94.8 %. Based on the sequence comparison data, strain AK40T was positioned distinctly outside the group formed by the genera Phaeochromatium, Marichromatium, Halochromatium, Thiohalocapsa, Rhabdochromatium and Thiorhodovibrio. Distinct morphological, physiological and genotypic differences from previously described taxa supported the classification of this isolate as a representative of a novel species in a new genus, for which the name Phaeobacterium nitratireducens gen. nov., sp. nov. is proposed. The type strain of Phaeobacterium nitratireducens is AK40T ( = JCM 19219T = MTCC 11824T).


2004 ◽  
Vol 54 (2) ◽  
pp. 493-497 ◽  
Author(s):  
Brian J. Henson ◽  
Sharon M. Hesselbrock ◽  
Linda E. Watson ◽  
Susan R. Barnum

The heterocystous cyanobacteria are currently placed in subsections IV and V, which are distinguished by cellular division in one plane (false branching) and in more than one plane (true branching), respectively. Published phylogenies of 16S rRNA gene sequence data support the monophyly of the heterocystous cyanobacteria, with members of subsection V embedded within subsection IV. It has been postulated that members of subsection V arose from within subsection IV. Therefore, phylogenetic analysis of nucleotide sequences of the nitrogen-fixation gene nifD from representatives of subsections IV and V was performed by using maximum-likelihood criteria. The heterocystous cyanobacteria are supported as being monophyletic, with the non-heterocystous cyanobacteria as their closest relative. However, neither subsection IV nor subsection V is monophyletic, with representatives of both subsections intermixed in two sister clades. Analysis of nifD does not support recognition of two distinct subsections.


2006 ◽  
Vol 56 (4) ◽  
pp. 841-845 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

The taxonomic position of four Gram-negative, rod-shaped, golden-yellow-coloured bacteria isolated from marine sediments was determined. Analysis of the almost complete 16S rRNA gene sequences indicated that these isolates belong to the family Flavobacteriaceae. An unclassified bacterium, NBRC 15975, was found to be the closest relative, showing 16S rRNA gene sequence similarity of 93 %; other related genera shared only 87·9–90·5 % similarity. In contrast, the four isolates shared high levels of 16S rRNA gene sequence similarity (99·3–99·7 %) and high DNA–DNA reassociation values (93–104 %). The isolates could be differentiated phenotypically from other genera by the abilities to reduce nitrate and to degrade gelatin, casein and starch. The only respiratory quinone was MK-6, and the major fatty acids were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The DNA G+C content was 38–40 mol%. Differentiating phenotypic characteristics and large phylogenetic distances between the isolates and previously published genera indicated that the isolates constitute a novel genus, for which the name Sediminicola gen. nov. is proposed. The type species is Sediminicola luteus sp. nov. (type strain CNI-3T=NBRC 100966T=LMG 23246T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2238-2246 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Evie De Brandt ◽  
Peter Vandamme ◽  
...  

Two bacterial strains (SC-089T and SC-092T) isolated from sewage sludge compost were characterized by using a polyphasic approach. The isolates were Gram-negative short rods, catalase- and oxidase-positive, and showed good growth at 30 °C, at pH 7 and with 1 % (w/v) NaCl. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were amongst the major polar lipids. On the basis of 16S rRNA gene sequence analysis, the strains were observed to be members of the family Alcaligenaceae, but could not be identified as members of any validly described genus. The low levels of 16S rRNA gene sequence similarity to other recognized taxa, together with comparative analysis of phenotypic traits and chemotaxonomic markers, supported the proposal of a new genus within the family Alcaligenaceae, for which the name Candidimonas gen. nov. is proposed. Strains SC-089T and SC-092T, which shared 99.1 % 16S rRNA gene sequence similarity, could be differentiated at the phenotypic level, and DNA–DNA hybridization results supported their identification as representing distinct species. The names proposed for these novel species are Candidimonas nitroreducens sp. nov. (type strain, SC-089T = LMG 24812T = CCUG 55806T) and Candidimonas humi sp. nov. (type strain, SC-092T = LMG 24813T = CCUG 55807T).


Sign in / Sign up

Export Citation Format

Share Document