scholarly journals Effect of Calcium and Manganese Supplementation on Heat Resistance of Spores of Bacillus Species Associated With Food Poisoning, Spoilage, and Fermentation

2021 ◽  
Vol 12 ◽  
Author(s):  
Martti Tapani Sinnelä ◽  
Alixander Mattay Pawluk ◽  
Young Hun Jin ◽  
Dabin Kim ◽  
Jae-Hyung Mah

Bacterial spores often survive thermal processing used in the food industry, while heat treatment leads not only to a decrease in the nutritional and organoleptic properties of foods, but also to a delay in fermentation of fermented foods. Selective reduction of undesirable spores without such impediments is an ongoing challenge for food scientists. Thus, increased knowledge of the spore-forming bacteria is required to control them. In this study, the heat resistance results (D100°C) of the spores of four Bacillus species were determined and compared to previous literature, and found that B. cereus has significantly lower heat resistance than the other Bacillus species, B. coagulans, B. subtilis, and B. licheniformis. Using the spores of these strains, this study also evaluated the effects of single and combined supplementation of calcium (0.00–2.00 mM) and manganese (0.00–0.50 mM) on heat resistance (D100°C). The results revealed that the spores of B. licheniformis and B. cereus displayed the smallest heat resistance when sporulated on media rich in calcium. Conversely, B. coagulans spores and B. subtilis spores exhibited the greatest heat resistance when sporulated under calcium-rich conditions. The opposite results (stronger heat resistance for B. licheniformis spores and B. cereus spores, and smaller heat resistance for B. coagulans spores and B. subtilis spores) were obtained when the spores were formed on media poor in the minerals (particularly calcium). Based on the results, the Bacillus species were divided into two groups: B. licheniformis and B. cereus; and B. coagulans and B. subtilis. The study provides valuable insight to selectively reduce spores of undesirable Bacillus species in the food industry.

Foods ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 119 ◽  
Author(s):  
Martti Sinnelä ◽  
Young Park ◽  
Jae Lee ◽  
KwangCheol Jeong ◽  
Young-Wan Kim ◽  
...  

Spores are resistant against many extreme conditions including the disinfection and sterilization methods used in the food industry. Selective prevention of sporulation of Bacillus species is an ongoing challenge for food scientists and fermentation technologists. This study was conducted to evaluate the effects of single and combined supplementation of calcium and manganese on sporulation of common pathogenic and food spoilage Bacillus species: B. cereus, B. licheniformis, B. subtilis and B. coagulans. Sporulation of Bacillus vegetative cells was induced on sporulation media supplemented with diverse concentrations of the minerals. Under the various mineral supplementation conditions, the degree of sporulation was quantified with colonies formed by the Bacillus spores. The results revealed that B. licheniformis and B. cereus displayed the weakest sporulation capabilities on media with minimal supplementation levels of calcium and manganese. The lowest sporulation of B. subtilis and B. coagulans was observed on media supplemented with the highest level of calcium and low levels of manganese. Depending on effect of supplementation on sporulation, the Bacillus species were divided into two distinct groups: B. licheniformis and B. cereus; and B. subtilis and B. coagulans. The information provides valuable insight to selectively reduce sporulation of Bacillus species undesirable in the food industry.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 221
Author(s):  
Do-Youn Jeong ◽  
Myeong Seon Ryu ◽  
Hee-Jong Yang ◽  
Sunmin Park

Fermented soybean paste is an indigenous food for use in cooking in East and Southeast Asia. Korea developed and used its traditional fermented foods two thousand years ago. Chungkookjang has unique characteristics such as short-term fermentation (24–72 h) without salt, and fermentation mostly with Bacilli. Traditionally fermented chungkookjang (TFC) is whole cooked soybeans that are fermented predominantly by Bacillus species. However, Bacillus species are different in the environment according to the regions and seasons due to the specific bacteria. Bacillus species differently contribute to the bioactive components of chungkookjang, resulting in different functionalities. In this review, we evaluated the production process of poly-γ-glutamic acid (γ-PGA)-rich chungkookjang fermented with specific Bacillus species and their effects on memory function through the modulation of brain insulin resistance, neuroinflammation, and the gut–microbiome–brain axis. Bacillus species were isolated from the TFC made in Sunchang, Korea, and they included Bacillus (B.) subtilis, B. licheniformis, and B. amyloliquefaciens. Chungkookjang contains isoflavone aglycans, peptides, dietary fiber, γ-PGA, and Bacillus species. Chungkookjangs made with B. licheniformis and B. amyloliquefaciens have higher contents of γ-PGA, and they are more effective for improving glucose metabolism and memory function. Chungkookjang has better efficacy for reducing inflammation and oxidative stress than other fermented soy foods. Insulin sensitivity is improved, not only in systemic organs such as the liver and adipose tissues, but also in the brain. Chungkookjang intake prevents and alleviates memory impairment induced by Alzheimer’s disease and cerebral ischemia. This review suggests that the intake of chungkookjang (20–30 g/day) rich in γ-PGA acts as a synbiotic in humans and promotes memory function by suppressing brain insulin resistance and neuroinflammation and by modulating the gut–microbiome–brain axis.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


2016 ◽  
Vol 238 ◽  
pp. 193-201 ◽  
Author(s):  
Faizan A. Sadiq ◽  
Yun Li ◽  
TongJie Liu ◽  
Steve Flint ◽  
Guohua Zhang ◽  
...  

2008 ◽  
Vol 74 (11) ◽  
pp. 3328-3335 ◽  
Author(s):  
Benjamin Orsburn ◽  
Stephen B. Melville ◽  
David L. Popham

ABSTRACT The endospores formed by strains of type A Clostridium perfringens that produce the C. perfringens enterotoxin (CPE) are known to be more resistant to heat and cold than strains that do not produce this toxin. The high heat resistance of these spores allows them to survive the cooking process, leading to a large number of food-poisoning cases each year. The relative importance of factors contributing to the establishment of heat resistance in this species is currently unknown. The present study examines the spores formed by both CPE+ and CPE− strains for factors known to affect heat resistance in other species. We have found that the concentrations of DPA and metal ions, the size of the spore core, and the protoplast-to-sporoplast ratio are determining factors affecting heat resistance in these strains. While the overall thickness of the spore peptidoglycan was found to be consistent in all strains, the relative amounts of cortex and germ cell wall peptidoglycan also appear to play a role in the heat resistance of these strains.


Food Control ◽  
2014 ◽  
Vol 45 ◽  
pp. 16-21 ◽  
Author(s):  
Mohammed Ziane ◽  
Noémie Desriac ◽  
Patrick Le Chevalier ◽  
Olivier Couvert ◽  
Boumediene Moussa-Boudjemaa ◽  
...  

2009 ◽  
Vol 72 (9) ◽  
pp. 1909-1915 ◽  
Author(s):  
ELIZABETH M. GRASSO ◽  
AHMED E. YOUSEF ◽  
LUIS A. RODRIGUEZ-ROMO ◽  
LUIS E. RODRIGUEZ-SAONA

Bacillus species may be resistant to processing and sanitation procedures, making their control an important issue in the food industry. The objective of this study was to develop a rapid method for the differentiation of Bacillus cells at the strain level using infrared microspectroscopy and multivariate pattern recognition techniques. Aliquots (10 ml) of vegetative cells (~103 CFU/ml) from four strains of each of three Bacillus species (B. cereus, B. mycoides, and B. thuringiensis) were filtered onto hydrophobic grid membranes. The membranes were placed on tryptic soy agar and incubatedat 42°C for 24 h and then removed from the agar and dried, and the biomass of individual vegetative colonies was directly measured by attenuated total reflectance infrared (ATRIR) microspectroscopy. Soft independent modeling of class analogy models generated from second derivative transformed spectra in the 1,300 to 900 cm−1 region exhibited clusters that permitted accurate strain-level classification of all isolates. Major discrimination was related to the signal from phosphate-containing compounds, likely phospholipids. Results indicate that a simple ATR-IR microspectroscopy technique combined with multivariate analysis could provide the food industry with a rapid and reagent-free screening procedure to complement more elaborate molecular identification methods.


1974 ◽  
Vol 73 (3) ◽  
pp. 433-444 ◽  
Author(s):  
R. J. Gilbert ◽  
M. F. Stringer ◽  
T. C. Peace

SummaryA number of outbreaks of food poisoning attributed toBacillus cereushave been reported recently and all have been associated with cooked rice usually from Chinese restaurants and ‘take-away’ shops.Tests were made to assess the heat resistance ofB. cereusspores in aqueous suspension, the growth of the organism in boiled rice stored at temperatures in the range 4–55° C., and the effect of cooking and storage on the growth of the organism in boiled and fried rice. The spores ofB. cereussurvived cooking and were capable of germination and outgrowth. The optimum temperature for growth in boiled rice was between 30° and 37° C. and growth also occurred during storage at 15° and 43° C.To prevent further outbreaks it is suggested that rice should be boiled in smaller quantities on several occasions during the day, thereby reducing the storage time before frying. After boiling the rice should either be kept hot (> 63° C.) or cooled quickly and transferred to a refrigerator within 2 hr. of cooking. Boiled or fried rice must not be stored under warm conditions especially in the range 15–50° C.


2004 ◽  
Vol 67 (2) ◽  
pp. 316-321 ◽  
Author(s):  
DARRELL O. BAYLES

Stationary-phase Listeria monocytogenes cells that were either pH dependent acid adapted or not acid adapted were heat challenged at 60°C in a two-level full factorial design for three variables. The three variables and the levels consisted of tryptic soy broth (TSB) and sterile cell-free culture supernatant (sterile TSB), the presence and absence of 1% added glucose, and pH 4.8 and pH 7. Non–acid-adapted cells were most heat resistant when challenged in TSB (mean decimal reduction times at 60°C: D60 = 1.16 min). In the absence of added glucose, non–acid-adapted cells had similar D60-values for inactivations at pH 4.8 and pH 7; however, the presence of glucose caused non–acid-adapted cells challenged at pH 4.8 to be more heat sensitive (D60 = 0.65 min) than those inactivated at pH 7 (D60 = 1.03 min), indicating an interaction between glucose and pH. Overall, the significantly decreased heat resistance of the acid-adapted cells was due to the presence of glucose (D60 = 0.78 min without glucose, D60 = 0.59 min with glucose). Acid-adapted cells heat challenged in TSB had similar D60-values for inactivations at pH 4.8 and pH 7; however, acid-adapted cells in sterile TSB challenged at pH 4.8 (D60 = 0.52 min) had significantly lower heat resistance than did cells challenged at pH 7 (D60 = 0.76 min), indicating an interaction between the medium and pH. The L. monocytogenes survivor data were modeled to extract information on the frequency distribution of heat resistance within heat-challenged populations, and the frequency distribution characteristics of mean, mode, and variance were compared among treatment conditions. Significant differences in the frequency distribution data were compared with the D60-values. These data indicated that the presence and level of cross-protection is highly dependent on the physiological state of the cells and nutrient availability at the time of heat challenge. Such conditions should be considered to ensure that stressed pathogens in foods are destroyed or inactivated.


2020 ◽  
Vol 8 (9) ◽  
pp. 1359
Author(s):  
Sarah Azinheiro ◽  
Joana Carvalho ◽  
Marta Prado ◽  
Alejandro Garrido-Maestu

Food poisoning continue to be a threat in the food industry showing a need to improve the detection of the pathogen responsible for the hospitalization cases and death. DNA-based techniques represent a real advantage and allow the detection of several targets at the same time, reducing cost and time of analysis. The development of new methodology using SYBR Green qPCR for the detection of L. monocytogenes, Salmonella spp. and E. coli O157 simultaneously was developed and a non-competitive internal amplification control (NC-IAC) was implemented to detect reaction inhibition. The formulation and supplementation of the enrichment medium was also optimized to allow the growth of all pathogens. The limit of detection (LoD) 95% obtained was <1 CFU/25 g for E. coli O157, and 2 CFU/25 g for Salmonella spp. and L. monocytogenes and regarding the multiplex detection a LoD 95% of 1.7 CFU/25 g was observed. The specificity, relative sensitivity and accuracy of full methodology were 100% and the use of the NC-IAC allowed the reliability of the results without interfering with the sensitivity of the methodology. The described study proved to obtain results comparable to those of probe-based qPCR, and more economically than classical high resolution melting qPCR, being both important aspects for its implementation in the food industry.


Sign in / Sign up

Export Citation Format

Share Document