scholarly journals Complete Genome Sequence of Weissella confusa LM1 and Comparative Genomic Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglei Yuan ◽  
Yundan Wang ◽  
Fangqing Zhao ◽  
Le Kang

The genus Weissella is attracting an increasing amount of attention because of its multiple functions and probiotic potential. In particular, the species Weissella confusa is known to have great potential in industrial applications and exhibits numerous biological functions. However, the knowledge on this bacterium in insects is not investigated. Here, we isolated and identified W. confusa as the dominant lactic acid bacteria in the gut of the migratory locust. We named this strain W. confusa LM1, which is the first genome of an insect-derived W. confusa strain with one complete chromosome and one complete plasmid. Among all W. confusa strains, W. confusa LM1 had the largest genome. Its genome was the closest to that of W. confusa 1001271B_151109_G12, a strain from human feces. Our results provided accurate evolutionary relationships of known Weissella species and W. confusa strains. Based on genomic analysis, the pan-genome of W. confusa is in an open state. Most strains of W. confusa had the unique genes, indicating that these strains can adapt to different ecological niches and organisms. However, the variation of strain-specific genes did represent significant correlations with their hosts and ecological niches. These strains were predicted to have low potential to produce secondary metabolites. Furthermore, no antibiotic resistance genes were identified. At the same time, virulence factors associated with toxin production and secretion system were not found, indicating that W. confusa strains were not sufficient to perform virulence. Our study facilitated the discovery of the functions of W. confusa LM1 in locust biology and their potential application to locust management.

2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Dexi Bi ◽  
Jiayi Zheng ◽  
Jun-Jie Li ◽  
Zi-Ke Sheng ◽  
Xingchen Zhu ◽  
...  

ABSTRACTIncFIIKplasmids are associated with the acquisition and dissemination of multiple-antimicrobial resistance inKlebsiella pneumoniaeand often encountered in clinical isolates of this species. Since the phylogeny and evolution of IncFIIKplasmids remain unclear, here we performed large-scalein silicotyping and comparative analysis of these plasmids in publicly available bacterial/plasmid genomes. IncFIIKplasmids are prevalent inK. pneumoniae, being found in 69% of sequenced genomes, covering 66% of sequenced STs (sequence types), but sparse in otherEnterobacteriaceae. IncFIIKreplicons have three lineages. One IncFIIKallele could be found in distinctK. pneumoniaeSTs, highlighting the lateral genetic flow of IncFIIKplasmids. A set of 77 IncFIIKplasmids with full sequences were further analyzed. A pool of 327 antibiotic resistance genes or remnants were annotated in 75.3% of these plasmids. Plasmid genome comparison reiterated that they often contain other replicons belonging to IncFIA, IncFIB, IncFIIYp, IncFIIpCRY, IncR, IncL, and IncN groups and that they share a conserved backbone featuring an F-like conjugation module that has divergent components responsible for regulation and mating pair stabilization. Further epidemiological studies of IncFIIKplasmids are required due to the sample bias ofK. pneumoniaegenomes in public databases. This study provides insights into the evolution and structures of IncFIIKplasmids.


2020 ◽  
Vol 11 ◽  
Author(s):  
Walaa E. Hussein ◽  
Ahmed G. Abdelhamid ◽  
Diana Rocha-Mendoza ◽  
Israel García-Cano ◽  
Ahmed E. Yousef

An Enterococcus durans strain, designated OSY-EGY, was previously isolated from artisanal cheese. In this work, comparative genomic and phenotypic analyses were utilized to assess the safety characteristics and probiotic traits of the bacterium. The comparative genomic analysis revealed that the strain is distantly related to potentially pathogenic Enterococcus spp. The genome was devoid of genes encoding acquired antibiotic resistance or marker virulence factors associated with Enterococcus spp. Phenotypically, the bacterium is susceptible to vancomycin, ampicillin, tetracycline, chloramphenicol, and aminoglycosides and does not have any hemolytic or gelatinase activity, or cytotoxic effect on Caco-2 cells. Altogether, these findings confirm the lack of hazardous traits in E. durans OSY-EGY. Mining E. durans OSY-EGY genome, for probiotic-related sequences, revealed genes associated with acid and bile salts tolerance, adhesion, competitiveness, antioxidant activitiy, antimicrobial activity, essential amino acids production, and vitamins biosynthesis. Phenotypically, E. durans OSY-EGY was tolerant to acidic pH (3.0), and presence of 0.3% bile salts. The bacterium showed adhesion capability to Caco-2 cells, cholesterol-lowering effect, DPPH scavenging activity, and antimicrobial activity against several Gram-positive pathogenic bacteria. Based on the current work, we propose that E. durans OSY-EGY is a potentially safe strain with desirable probiotic and antimicrobial traits. Thus, the investigated strain could be a promising candidate for several industrial applications.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1565-1572 ◽  
Author(s):  
Govind Chandra ◽  
Keith F. Chater ◽  
Stephen Bornemann

Glycogen, a large α-glucan, is a ubiquitous energy storage molecule among bacteria, and its biosynthesis by the classical GlgC-GlgA pathway and its degradation have long been well understood – or so we thought. A second pathway of α-glucan synthesis, the four-step GlgE pathway, was recently discovered in mycobacteria. It requires trehalose as a precursor, and has been genetically validated as a novel anti-tuberculosis drug target. The ability to convert glycogen into trehalose was already known, so the GlgE pathway provides a complementary way of cycling these two metabolites. As well as containing cytosolic storage glycogen, mycobacteria possess an outer capsule containing a glycogen-like α-glucan that is implicated in immune system evasion, so the GlgE pathway might be linked to capsular α-glucan biosynthesis. Another pathway (the Rv3032 pathway) for α-glucan biosynthesis in mycobacteria generates a methylglucose lipopolysaccharide thought to be associated with fatty acid metabolism. A comparative genomic analysis was carried out to evaluate the occurrence and role of the classical pathway, the new GlgE pathway and the Rv3032 pathway across bacteria occupying very different ecological niches. The GlgE pathway is represented in 14 % of sequenced genomes from diverse bacteria (about half as common as the classical pathway), while the Rv3032 pathway is restricted with few exceptions to mycobacteria, and the GlgB branching enzyme, usually presumed to be associated with the classical pathway, correlates more strongly with the new GlgE pathway. The microbiological implications of recent discoveries in the light of the comparative genomic analysis are discussed.


2019 ◽  
Author(s):  
Shengyi Han ◽  
JianHua Zhou ◽  
Lina Ma ◽  
Chengxiu Ma ◽  
Qiaoying Zeng ◽  
...  

Abstract Background: Enterococcus are important opportunistic pathogens that readily acquire foreign genes and could be easily lysogenized by phages. But no comparative genomic analysis of Enterococcus prophages had been undertaken to date. The prophage distribution, potential contribution and the relationship with Enterococcus defensive system remain unclear. Result: This study presents a comparative analysis of 563 putative prophages identified in 107 chromosomes and 301 plasmids of Enterococcus. Our result suggested that lysogens are highly prevalent in Enterococcus and Enterococcus genomes have more prophages than other bacteria, the number of prophages are related with strains pathogenicity, groups and isolated regions, and the prophages distribution present phylogeographic pattern. By analyzing the prophages characteristic, it is found that prophages can be divided into many clusters, but most of prophages have distant genetic relationship with sequenced phages and remain unreported; Prophages integrated into chromosomes and plasmids have different evolutionary origins, and show different genomes size, GC% and genes characteristic. It should be noted that all antibiotic resistance genes are carried by plasmids prophages and E. faecium plasmid prophages play important roles in transmission of vancomycin resistance genes through plasmid conjugation transfer and phages transduction. By investigating and statistical analyzing the relationship between major defend systems and the number of prophages, it indicated that R-M system often absent in Enterococcus, orphan CRISPR array prevalent in most of Enterococcus, and the presence of CRISPR-spacers and the absence of prophages in lysogen is inversely related. Conclusion: To our knowledge, this is the first systematic analysis of Enterococcus prophages distribution, potential contribution and phylogeny, and elucidate the relationship between defense system and lysogeny in Enterococcus. This information helps to understand how prophages affect its hosts diversity, fitness and evolution.


2002 ◽  
Vol 70 (7) ◽  
pp. 3978-3981 ◽  
Author(s):  
Lisa L. Herron ◽  
Rajit Chakravarty ◽  
Christopher Dwan ◽  
J. Ross Fitzgerald ◽  
James M. Musser ◽  
...  

ABSTRACT Staphylococcus aureus is a major cause of mastitis in bovine and other ruminant species. We here present the results of a comparative genomic analysis between a bovine mastitis-associated clone, RF122, and the recently sequenced human-associated clones, Mu50 and N315, of Staphylococcus aureus. A shotgun sequence survey of ∼10% of the RF122 genome identified numerous unique sequences and those with elevated rates of nonsynonymous substitution. Taken together, these analyses show that there are notable differences in the genomes of bovine mastitis-associated and human clones of S. aureus and provide a framework for the identification of specific factors associated with host specificity in this major human and animal pathogen.


mSystems ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Taylor K. S. Richter ◽  
Jane M. Michalski ◽  
Luke Zanetti ◽  
Sharon M. Tennant ◽  
Wilbur H. Chen ◽  
...  

ABSTRACTStudies ofEscherichia coliin the human gastrointestinal tract have focused on pathogens, such as diarrhea-causing enterotoxigenicE. coli(ETEC), while overlooking the resident, nonpathogenicE. colicommunity. Relatively few genomes of nonpathogenicE. colistrains are available for comparative genomic analysis, and the ecology of these strains is poorly understood. This study examined the diversity and dynamics of resident human gastrointestinalE. colicommunities in the face of the ecological challenges presented by pathogen (ETEC) challenge, as well as of antibiotic treatment. Whole-genome sequences obtained fromE. coliisolates from before, during, and after ETEC challenge were used in phylogenomic and comparative genomic analyses to examine the diversity of the residentE. colicommunities, as well as the dynamics of the challenge strain, H10407, a well-studied ETEC strain (serotype O78:H11) that produces both heat-labile and heat-stable enterotoxins. ETEC failed to become the dominantE. coliclone in two of the six challenge subjects, each of whom exhibited limited or no clinical presentation of diarrhea. TheE. colicommunities of the remaining four subjects became ETEC dominant during the challenge but reverted to their original, subject-specific populations following antibiotic treatment, suggesting resiliency of the residentE. colipopulation following major ecological disruptions. This resiliency is likely due in part to the abundance of antibiotic-resistant ST131E. colistrains in the resident populations. This report provides valuable insights into the potential interactions of members of the gastrointestinal microbiome and its responses to challenge by an external pathogen and by antibiotic exposure.IMPORTANCEResearch on human-associatedE. colitends to focus on pathogens, such as enterotoxigenicE. coli(ETEC) strains, which are a leading cause of diarrhea in developing countries. However, the severity of disease caused by these pathogens is thought to be influenced by the microbiome. The nonpathogenicE. colicommunity that resides in the human gastrointestinal tract may play a role in pathogen colonization and disease severity and may become a reservoir for virulence and antibiotic resistance genes. Our study used whole-genome sequencing ofE. colibefore, during, and after challenge with an archetype ETEC isolate, H10407, and antibiotic treatment to explore the diversity and resiliency of the residentE. colipopulation in response to the ecological disturbances caused by pathogen invasion and antibiotic treatment.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Thongpan Leangapichart ◽  
Linda Hadjadj ◽  
Philippe Gautret ◽  
Jean-Marc Rolain

Abstract Background Shewanella xiamenensis has been reported in water environment and in patients and can act as the originator of oxacillinase in gram-negative bacteria. In order to assess genome plasticity and its functional properties related diarrhea symptoms in pilgrim, comparisons of draft genome sequences of the two isolates were conducted with other closely related genomes. Results We isolated S. xiamenensis 111B and 111D strains from a pilgrim before travels to the Hajj and during travels with diarrhea symptom, respectively. Whole-genome sequencing showed that draft genome size of 111B strain was 5,008,191 bp, containing 49 kb of a putative plasmid. The genome size of 111D was 4,964,295 bp containing 225 kb of a putative plasmid that shared the backbone sequences with the hospital wastewater strain T17. Comparatively, two Hajj strains are identical at 97.3% identity and 98.7% coverage. They are closely related to river water strain, AS58 by SNPs analysis. Notably, a novel blaOXA-48 allele blaOXA-547 was identified in 111D, sharing 99.5% identity with blaOXA-546 and blaOXA-894. Multiple copies of virulence specific genes, such as capsular polysaccharide biosynthesis, O-antigen and lasB (vibriolysin related gene) have been identified specifically in 111D, but absent in 111B strain. Conclusions The whole genome sequences of S. xiamenensis strain 111B and 111D, including comparative genomic analysis, highlight here the potential for virulence factors that might be related to the cause of diarrhea in humans and also indicate the possible acquisition of pathogenic bacteria, including antibiotic resistance genes or plasmids during the Hajj.


2018 ◽  
Author(s):  
Sarbashis Das ◽  
B. M. Fredrik Pettersson ◽  
Phani Rama Krishna Behra ◽  
Amrita Mallick ◽  
Martin Cheramie ◽  
...  

AbstractMycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the “M”- and the “Aronson”-type. We suggest that these two clusters should be considered, if not two separate species, at least two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to that M. marinum occupy different ecological niches.


2021 ◽  
Vol 9 (8) ◽  
pp. 1751
Author(s):  
David Lupande-Mwenebitu ◽  
Mariem Ben Khedher ◽  
Sami Khabthani ◽  
Lalaoui Rym ◽  
Marie-France Phoba ◽  
...  

In this paper, we describe the first complete genome sequence of Providencia vermicola species, a clinical multidrug-resistant strain harboring the New Delhi Metallo-β-lactamase-1 (NDM-1) gene, isolated at the Kinshasa University Teaching Hospital, in Democratic Republic of the Congo. Whole genome sequencing of an imipenem-resistant clinical Gram-negative P. vermicola P8538 isolate was performed using MiSeq and Gridion, and then complete genome analysis, plasmid search, resistome analysis, and comparative genomics were performed. Genome assembly resulted in a circular chromosome sequence of 4,280,811-bp and 40.80% GC and a circular plasmid (pPV8538_NDM-1) of 151,684-bp and 51.93%GC, which was identified in an Escherichia coli P8540 strain isolated in the same hospital. Interestingly, comparative genomic analysis revealed multiple sequences acquisition within the P. vermicola P8538 chromosome, including three complete prophages, a siderophore biosynthesis NRPS cluster, a Type VI secretion system (T6SS), a urease gene cluster, and a complete Type-I-F CRISPR-Cas3 system. Β-lactamase genes, including blaCMY-6 and blaNDM-1, were found on the recombinant plasmid pPV8538_NDM-1, in addition to other antibiotic resistance genes such as rmtC, aac6’-Ib3, aacA4, catA1, sul1, aac6’-Ib-cr, tetA, and tetB. Genome comparison with Providencia species revealed 82.95% of average nucleotide identity (ANI), with P. stuartii species exhibiting 90.79% of proteome similarity. We report the first complete genome of P. vermicola species and for the first time the presence of the blaNDM-1 gene in this species. This work highlights the need to improve surveillance and clinical practices in DR Congo in order to reduce or prevent the spread of such resistance.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Seung Woo Ahn ◽  
Se Hee Lee ◽  
Uh Jin Kim ◽  
Hee-Chang Jang ◽  
Hak-Jong Choi ◽  
...  

Abstract Background Clostridioides difficile infection (CDI) is an infectious nosocomial disease caused by Clostridioides difficile, an opportunistic pathogen that occurs in the intestine after extensive antibiotic regimens. Results Nine C. difficile strains (CBA7201–CBA7209) were isolated from nine patients diagnosed with CDI at the national university hospital in Korea, and the whole genomes of these strains were sequenced to identify their genomic characteristics. Comparative genomic analysis was performed using 51 reference strains and the nine isolated herein. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that all 60 C. difficile strains belong to the genus Clostridioides, while core-genome tree indicated that they were divided into five groups, which was consistent with the results of MLST clade analysis. All strains were confirmed to have a clindamycin antibiotic resistance gene, but the other antibiotic resistance genes differ depending on the MLST clade. Interestingly, the six strains belonging to the sequence type 17 among the nine C. difficile strains isolated here exhibited unique genomic characteristics for PaLoc and CdtLoc, the two toxin gene loci identified in this study, and harbored similar antibiotic resistance genes. Conclusion In this study, we identified the specific genomic characteristics of Korean C. difficile strains, which could serve as basic information for CDI prevention and treatment in Korea.


Sign in / Sign up

Export Citation Format

Share Document