scholarly journals Detection and Quantification of Stagonosporopsis cucurbitacearum in Seeds of Cucurbita maxima Using Droplet Digital Polymerase Chain Reaction

2022 ◽  
Vol 12 ◽  
Author(s):  
Sergio Murolo ◽  
Marwa Moumni ◽  
Valeria Mancini ◽  
Mohamed Bechir Allagui ◽  
Lucia Landi ◽  
...  

Stagonosporopsis cucurbitacearum is an important seedborne pathogen of squash (Cucurbita maxima). The aim of our work was to develop a rapid and sensitive diagnostic tool for detection and quantification of S. cucurbitacearum in squash seed samples, to be compared with blotter analysis, that is the current official seed test. In blotter analysis, 29 of 31 seed samples were identified as infected, with contamination from 1.5 to 65.4%. A new set of primers (DB1F/R) was validated in silico and in conventional, quantitative real-time PCR (qPCR) and droplet digital (dd) PCR. The limit of detection of S. cucurbitacearum DNA for conventional PCR was ∼1.82 × 10–2 ng, with 17 of 19 seed samples positive. The limit of detection for ddPCR was 3.6 × 10–3 ng, which corresponded to 0.2 copies/μl. Detection carried out with artificial samples revealed no interference in the absolute quantification when the seed samples were diluted to 20 ng. All seed samples that showed S. cucurbitacearum contamination in the blotter analysis were highly correlated with the absolute quantification of S. cucurbitacearum DNA (copies/μl) in ddPCR (R2 = 0.986; p ≤ 0.01). Our ddPCR protocol provided rapid detection and absolute quantification of S. cucurbitacearum, offering a useful support to the standard procedure.

2021 ◽  
Author(s):  
Shawn Yi Han Tan ◽  
Milton Sheng Yi Kwek ◽  
Huiyu Low ◽  
Yan Ling Joy Pang

In recent years, the usage of digital polymerase chain reaction (dPCR) for various clinical applications has increased exponentially. Considering the growing demand for improved dPCR technology, the Clarity Plus™ dPCR system which features enhanced multiplexing capability and a wider dynamic range for nucleic acid analysis was recently launched. In this study, a dPCR assay optimized for use on Clarity Plus™ was evaluated for the absolute quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent responsible for the global coronavirus disease 2019 (COVID-19) outbreak. The assay demonstrated good inter- and intra- assay precision, accuracy, as well as excellent linearity across a range of over 6 orders of magnitude for target gene quantification. In addition, comparison of the assay on both dPCR and qPCR platforms revealed that dPCR exhibited a slightly higher sensitivity compared to its qPCR counterpart when quantifying SARS-CoV-2 at a lower concentration. Overall, the results showed that the dPCR assay is a reliable and effective approach for the absolute quantification of SARS-CoV-2 and can potentially be adopted as a molecular tool in applications such as detecting low viral loads in patients as well as in wastewater surveillance of COVID-19.


Author(s):  
Jing Xu ◽  
Timothy Kirtek ◽  
Yan Xu ◽  
Hui Zheng ◽  
Huiyu Yao ◽  
...  

Abstract Objectives The Bio-Rad SARS-CoV-2 ddPCR Kit (Bio-Rad Laboratories) was the first droplet digital polymerase chain reaction (ddPCR) assay to receive Food and Drug Administration (FDA) Emergency Use Authorization approval, but it has not been evaluated clinically. We describe the performance of ddPCR—in particular, its ability to confirm weak-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results. Methods We clinically validated the Bio-Rad Triplex Probe ddPCR Assay. The limit of detection was determined by using serial dilutions of SARS-CoV-2 RNA in an artificial viral envelope. The ddPCR assay was performed according to the manufacturer’s specifications on specimens confirmed to be positive (n = 48) or negative (n = 30) by an FDA-validated reverse transcription–polymerase chain reaction assay on the m2000 RealTime system (Abbott). Ten borderline positive cases were also evaluated. Results The limit of detection was 50 copies/mL (19 of 20 positive). Forty-seven specimens spanning a range of quantification cycles (2.9-25.9 cycle numbers) were positive by this assay (47 of 48; 97.9% positive precent agreement), and 30 negative samples were confirmed as negative (30 of 30; 100% negative percent agreement). Nine of 10 borderline cases were positive when tested in triplicate. Conclusions The ddPCR of SARS-CoV-2 is an accurate method, with superior sensitivity for viral RNA detection. It could provide definitive evaluation of borderline positive cases or suspected false-negative cases.


2021 ◽  
Vol 11 (3) ◽  
pp. 373-379
Author(s):  
Huitao Li ◽  
Xueyu Chen ◽  
Xiaomei Qiu ◽  
Weimin Huang ◽  
Chuanzhong Yang

Invasive fungal infection (IFI) is the leading cause of death in neonatal patients, yet the diagnosis of IFI remains a major challenge. At present, most IFI laboratory diagnostic methods are based on classical, but limited, methods such as fungal isolation and culture and histopathological examination. Recently, quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technology have been adopted to quantify nucleic-acid identification. In this study, we established qPCR and ddPCR assays for IFI diagnosis and quantification. qPCR and ddPCR were carried out using identical primers and probe for the amplification of 18S rRNA. Assay results for three fungal strains were positive, whereas ten non-fungal strains had negative results, indicating 100% specificity for both ddPCR and qPCR methods. Genomic DNA of Candida albicans was tested after a serial dilution to compare the sensitivity of the two PCR methods. The limit of detection of ddPCR was 3.2 copies/L, which was a ten-fold increase compared with that of the qPCR method (32 copies/L). Blood samples from 127 patients with high-risk factors and clinical symptoms for IFI were collected from a NICU in Shenzhen, China, and analyzed using qPCR and ddPCR. Thirty-four blood samples from neonates had a proven or probable diagnosis of IFI, and 25 of these were positive by qPCR, whereas 30 were positive by ddPCR. Among the 93 blood samples from neonates who had a possible IFI or no IFI, 24 were positive using qPCR, and 7 were positive using ddPCR. In conclusion, ddPCR is a rapid and accurate pan-fungal detection method and provides a promising prospect for IFI clinical screening.


Acta Tropica ◽  
2019 ◽  
Vol 200 ◽  
pp. 105175
Author(s):  
Justine Daudi Maganira ◽  
Beda John Mwang'onde ◽  
Winifrida Kidima ◽  
Chacha John Mwita ◽  
Gamba Nkwengulila ◽  
...  

2019 ◽  
Vol 56 (4) ◽  
pp. 1150-1153
Author(s):  
L M Rice ◽  
L L Robb ◽  
D A Hartman ◽  
J R Anderson ◽  
R C Kading

Abstract Hematophagous arthropod bloodmeal identification has remained a challenge in the field of vector biology, but these studies are important to understand blood feeding patterns of arthropods, spatial, and temporal patterns in arbovirus transmission cycles, and risk of human and veterinary disease. We investigated the use of an existing vertebrate primer set for use on the droplet digital polymerase chain reaction (ddPCR) platform, to explore the use of this technology in the identification and quantification of vertebrate DNA in mosquito blood meals. Host DNA was detectable 48-h post-engorgement in some mosquitoes by ddPCR, compared with 24-h post-engorgement using traditional PCR. The capability of ddPCR for absolute quantification of template DNA offers unique potential applications of this new technology to field studies on the ecology of vector-borne diseases, but currently with limited scope.


Author(s):  
Tigst Demeke ◽  
Monika Eng ◽  
Michelle Holigroski ◽  
Sung-Jong Lee

Abstract Low-level detection and quantification of genetically engineered (GE) traits with polymerase chain reaction (PCR) is challenging. For unapproved GE events, any level of detection is not acceptable in some countries because of zero tolerance. Droplet digital PCR (ddPCR) has been successfully used for absolute quantification of GE events. In this study, reliability of low level quantification of GE events with ddPCR was assessed using a total of 50, 100, 200, 400, and 600 ng DNA spiked at 0.01% and 0.1% concentration levels. Genetically engineered canola (GT73 and MON88302 events) and soybean (A2704-12 and DP305423 events) events were used for the study. For samples spiked at 0.1% level, reliable quantification was achieved for the four GE events using 50 or 100 ng DNA. Few target droplets were generated for 0.01% spiked GE samples using 50 and 100 ng DNA. Increasing the amount of DNA for ddPCR generated more number of target droplets. For GE canola events, the use of 400 and 600 ng DNA for ddPCR resulted in saturation. The use of multiple wells of 200 ng DNA (instead of 400 and 600 ng per well) helped to overcome the saturation problem. Overall, the use of high amount of DNA for ddPCR was helpful for the detection and quantification of 0.01% GE samples.


Sign in / Sign up

Export Citation Format

Share Document