scholarly journals Dietary Correlates of Oral and Gut Microbiota in the Water Monitor Lizard, Varanus salvator (Laurenti, 1768)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yu Du ◽  
Jun-Qiong Chen ◽  
Qian Liu ◽  
Jian-Chao Fu ◽  
Chi-Xian Lin ◽  
...  

Numerous studies have demonstrated that food shapes the structure and composition of the host’s oral and gut microbiota. The disorder of oral and gut microbiota may trigger various host diseases. Here, we collected oral and gut samples from wild water monitor lizards (Varanus salvator) and their captive conspecifics fed with bullfrogs, eggs, and depilated chicken, aiming to examine dietary correlates of oral and gut microbiota. We used the 16S rRNA gene sequencing technology to analyze the composition of the microbiota. Proteobacteria and Bacteroidota were the dominant phyla in the oral microbiota, and so were in the gut microbiota. The alpha diversity of microbiota was significantly higher in the gut than in the oral cavity, and the alpha diversity of oral microbiota was higher in captive lizards than in wild conspecifics. Comparing the relative abundance of oral and gut bacteria and their gene functions, differences among different animal groups presumably resulted from human contact in artificial breeding environments and complex food processing. Differences in gene function might be related to the absolute number and/or the taxonomic abundance of oral and gut microorganisms in the wild and the water environment. This study provides not only basic information about the oral and gut microbiota of captive and wild water monitor lizards, but also an inference that feeding on frogs and aquatic products and reducing human exposure help water monitor lizards maintain a microbiota similar to that in the wild environment.

Author(s):  
Yoshihiro Tomizawa ◽  
Shunya Kurokawa ◽  
Daiki Ishii ◽  
Katsuma Miyaho ◽  
Chiharu Ishii ◽  
...  

Abstract Background The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication. Method We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at 3 time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions. Results We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenic diversity whole-tree diversity decreased in patients on antipsychotics compared with patients without (P = .027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and phylogenic diversity whole tree (estimate = −0.00254, SE = 0.000595, P < .0001; estimate = −0.02644, SE = 0.00833, P = .002, respectively). Conclusion Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2125
Author(s):  
Limin Wei ◽  
Bo Zeng ◽  
Siyuan Zhang ◽  
Feng Li ◽  
Fanli Kong ◽  
...  

The gut microbiota coevolve with the host and can be stably transmitted to the offspring. Host genetics plays a crucial role in the composition and abundance of gut microbiota. Inbreeding can cause a decrease of the host’s genetic diversity and the heterozygosity. In this study, we used 16S rRNA gene sequencing to compare the differences of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to understand the impact of inbreeding on the gut microbiota. Three dominant bacteria (Stenotrophlomonas, Streptococcus, and Lactobacillus) were steadily enriched in both the Diannan small-ear pig and Banna minipig inbred. After inbreeding, the gut microbiota alpha diversity and some potential probiotics (Bifidobacterium, Tricibacter, Ruminocaccae, Christensenellaceae, etc.) were significantly decreased, while the pathogenic Klebsiella bacteria was significantly increased. In addition, the predicted metagenomic analysis (PICRUSt2) indicated that several amino acid metabolisms (‘‘Valine, leucine, and isoleucine metabolism’’, ‘‘Phenylalanine, tyrosine, and tryptophan biosynthesis’’, ‘‘Histidine metabolism’’) were also markedly decreased after the inbreeding. Altogether our data reveal that host inbreeding altered the composition and the predicted function of the gut microbiome, which provides some data for the gut microbiota during inbreeding.


Author(s):  
Yi-Jing Jia ◽  
Ying Liao ◽  
Yong-Qiao He ◽  
Mei-Qi Zheng ◽  
Xia-Ting Tong ◽  
...  

The oral microbiota has been observed to be influenced by cigarette smoking and linked to several human diseases. However, research on the effect of cigarette smoking on the oral microbiota has not been systematically conducted in the Chinese population. We profiled the oral microbiota of 316 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The alpha diversity of oral microbiota was different between never smokers and smokers (P = 0.002). Several bacterial taxa were first reported to be associated with cigarette smoking by LEfSe analysis, including Moryella (q = 1.56E-04), Bulleidia (q = 1.65E-06), and Moraxella (q = 3.52E-02) at the genus level and Rothia dentocariosa (q = 1.55E-02), Prevotella melaninogenica (q = 8.48E-08), Prevotella pallens (q = 4.13E-03), Bulleidia moorei (q = 1.79E-06), Rothia aeria (q = 3.83E-06), Actinobacillus parahaemolyticus (q = 2.28E-04), and Haemophilus parainfluenzae (q = 4.82E-02) at the species level. Two nitrite-producing bacteria that can increase the acidity of the oral cavity, Actinomyces and Veillonella, were also enriched in smokers with FDR-adjusted q-values of 3.62E-06 and 1.10E-06, respectively. Notably, we observed that two acid production-related pathways, amino acid-related enzymes (q = 6.19E-05) and amino sugar and nucleotide sugar metabolism (q = 2.63E-06), were increased in smokers by PICRUSt analysis. Finally, the co-occurrence analysis demonstrated that smoker-enriched bacteria were significantly positively associated with each other and were negatively correlated with the bacteria decreased in smokers. Our results suggested that cigarette smoking may affect oral health by creating a different environment by altering bacterial abundance, connections among oral microbiota, and the microbiota and their metabolic function.


2021 ◽  
Vol 9 (5) ◽  
pp. 1030
Author(s):  
Ke Liu ◽  
Siyu Chen ◽  
Jing Huang ◽  
Feihong Ren ◽  
Tingyu Yang ◽  
...  

The oral microbiota can be affected by several factors; however, little is known about the relationship between diet, ethnicity and commensal oral microbiota among school children living in close geographic proximity. In addition, the relationship between the oral and gut microbiota remains unclear. We collected saliva from 60 school children from the Tibetan, Han and Hui ethnicities for a 16S rRNA gene sequencing analysis and comparison with previously collected fecal samples. The study revealed that Bacteroidetes and Proteobacteria were the dominant phyla in the oral microbiota. The Shannon diversity was lowest in the Tibetan group. A PCA showed a substantial overlap in the distribution of the taxa, indicating a high degree of conservation among the oral microbiota across ethnic groups while the enrichment of a few specific taxa was observed across different ethnic groups. The consumption of seafood, poultry, sweets and vegetables was significantly correlated with multiple oral microbiotas. Furthermore, 123 oral genera were significantly associated with 191 gut genera. A principal coordinate analysis revealed that the oral microbiota clustered separately from the gut microbiota. This work extends the findings of previous studies comparing microbiota from human populations and provides a basis for the exploration of the interactions governing the tri-partite relationship between diet, oral microbiota and gut microbiota.


2020 ◽  
Author(s):  
Xiaoying Yang ◽  
Yuchen Yao ◽  
Xueying Zhang ◽  
Jiahui Zhong ◽  
Fuli Gao ◽  
...  

Abstract Background: Seasonal breeding is a normal phenomenon that animals adapt to natural selection and reproduce only in specific seasons. With the gradual popularization of Next-generation sequencing (NGS), large studies have shown that seasonal breeding has been affected by gut microbiota. Consequently, the purpose of this study is to explore the effect of seasonal breeding on the gut microbiota of wild ground squirrel (Spermophilus dauricus). We used 16S rRNA gene sequencing technology to sequence the gut microbiota of the wild ground squirrel in the breeding season and non-breeding season. We also predicted the function of gut microbiota by bioinformatic software.Results: The results showed that the main components of gut microbiota in all samples consisted of Firmicutes (61.8%), Bacteroidetes (32.4%), and Proteobacteria (3.7%). Microbial community composition analyses revealed significant differences between these two groups. At the genus level, Alistipes, Mycoplasma, Anaerotruncus, and Odoribacter were up-regulated in the non-breeding season, while Blautia and Streptococcus spp. were up-regulated in the breeding season. The result of function prediction suggested that the relative abundance of functional categories related to lipid metabolism, carbohydrate metabolism, and nucleotide metabolism was higher in the breeding season. The expression of transcription, energy metabolism, and signal transduction was enriched in the non-breeding season. Conclusions: Overall, the results of this study emphasized the significant effects of seasonal breeding on gut microbiota community composition of the wild ground squirrel and laid a foundation for further study of gut microbiota on seasonal breeding in the future.


2021 ◽  
Author(s):  
Jialiang Li ◽  
Xueyan Li ◽  
Sina Zhang ◽  
Chen Jin ◽  
Zixia Lin ◽  
...  

Abstract BACKGROUNDThe liver-microbiome axis is implicated in the pathogenesis of hepatobiliary cancer, and the role of the gut microbiota in cholangiocarcinoma (CCA) remains unclear.METHODWe conducted a case-control study on the intestinal flora of 33 CCA patients and 47 cholelithiasis individuals. We performed 16S rRNA gene sequencing to identify disease-related gut microbiota and assess the potential of the intestinal microbiome as a non-invasive biomarker for CCA.RESULTWe found that gut microbiome of CCA patients had a significantly higher alpha diversity (Shannon and Observed species indices, p = 0.006 and p = 0.02, respectively) and an overall different microbial community composition (p = 0.032). The genus Muribaculaceae_unclassified was most strongly associated with CCA (p < 0.001). We put forward a disease predictive model including twelve intestinal microbiome genera distinguished CCA patients from CF patients with an area under curve (AUC) of approximately 0.93 (95%CI, 0.85–0.987). The forecasting performance of this model was better than CA19-9. Moreover, genera Ezakiella and Garciella were only observed among intrahepatic cholangiocarcinoma patients. Further, we assessed predicted functional modules alternations CCA patients and uncovered a microbiota pattern specific to CCA.CONCLUSIONOur findings provide evidence of the intestinal microbiome as a non-invasive biomarker for CCA.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Virinder Sarhadi ◽  
Binu Mathew ◽  
Arto Kokkola ◽  
Tiina Karla ◽  
Milja Tikkanen ◽  
...  

Abstract Background Gastric adenocarcinoma is associated with H. pylori infection and inflammation that can result in the dysbiosis of gastric microbiota. The association of intestinal microbiota with gastric adenocarcinoma subtypes or with gastric gastrointestinal stromal tumors (GIST) is however not well known. Therefore, we performed 16S rRNA gene sequencing on DNA isolated from stool samples of Finnish patients and controls to study differences in microbiota among different histological subtypes of gastric adenocarcinoma, gastric GIST and healthy controls. Results We found that gut microbiota alpha diversity was lowest in diffuse adenocarcinoma patients, followed by intestinal type and GIST patients, although the differences were not significant compared to controls. Beta-diversity analysis however showed significant differences in microbiota composition for all subtypes compared to controls. Significantly higher abundance of Enterobacteriaceae was observed in both adenocarcinoma subtypes, whereas lower abundance of Bifidobacteriaceae was seen only in diffuse adenocarcinoma and of Oscillibacter in intestinal adenocarcinoma. Both GIST and adenocarcinoma patients had higher abundance of Enterobacteriaceae and lower abundance of Lactobacillaceae and Oscillibacter while lower abundance of Lachnoclostridium, Bifidobacterium, Parabacteroides and Barnesiella was seen only in the adenocarcinoma patients. Conclusions Our analysis shows association of higher Enterobacteriaceae abundance with all types of gastric tumors. Therefore it could be potentially useful as a marker of gastric malignancies. Lower gut microbiota diversity might be indicative of poorly differentiated, invasive, advanced or aggressive tumors and could possibly be a prognostic marker for gastric tumors.


2020 ◽  
Vol 8 (9) ◽  
pp. 1395
Author(s):  
Bokyoung Lee ◽  
Jieun Lee ◽  
Min-Yeong Woo ◽  
Mi Jin Lee ◽  
Ho-Joon Shin ◽  
...  

T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade. Bacterial gavage did not increase the alpha diversity of gut microbiota in antibiotic-treated mice but did alter the microbiome composition, which was associated with the restoration of the anti-tumour efficacy of Tim-3 blockade. Conclusively, our results indicate that gut microbiota modulation may improve the therapeutic efficacy of Tim-3 blockade during concomitant antibiotic treatment. The administered bacterial species and host factors should be considered in order to achieve therapeutically beneficial modulation of the microbiota.


2020 ◽  
Author(s):  
Bokyoung Lee ◽  
Jieun Lee ◽  
Min-Yeong Woo ◽  
Mi Jin Lee ◽  
Ho-Joon Shin ◽  
...  

Abstract Background T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a potential target for anti-cancer therapy. Alterations in the tumor-suppressive efficacy of immunotherapy due to gut microbiota disturbance have been reported; however, the influence of gut microbiota on the efficacy of Tim-3 blockade is yet to be investigated. In this study, we examined whether gut microbiota manipulation altered the anti-tumor efficacy of Tim-3 blockade. The gut microbiota was manipulated by the administration of antibiotics and oral gavage of bacteria to mice. Results Alterations in the gut microbiome were analyzed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumor efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mouse strains. Anti-tumor efficacy was restored via gut microbiota manipulation through oral gavage of fecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, the transferred bacterial species and host mouse strain were critical in determining the anti-tumor efficacy of Tim-3 blockade. Furthermore, oral bacterial gavage did not increase alpha diversity of the gut microbiota in antibiotics-treated mice but did alter microbiome composition, which was associated with restoration of anti-tumor efficacy of Tim-3 blockade. Conclusions Our results highlight the importance of the gut microbiota in anti-cancer immunotherapy responsiveness and indicate that gut microbiota modulation may increase the efficacy of immunotherapy when concomitantly administered with antibiotics. The administered bacterial species and host factors should be considered so as to benefit from gut microbiota modulation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Marcos Vinícius Reis Conceição ◽  
Sávio Souza Costa ◽  
Ana Paula Schaan ◽  
Ândrea Kely Campos Ribeiro-dos-Santos ◽  
Artur Silva ◽  
...  

The mangrove oysters (Crassostrea gasar) are molluscs native to the Amazonia region and their exploration and farming has increased considerably in recent years. These animals are farmed on beds built in the rivers of the Amazonia estuaries and, therefore, the composition of their microbiome should be directly influenced by environmental conditions. Our work aimed to evaluate the changes in bacterial composition of oyster's microbiota at two different seasons (rainy and dry). For this purpose, we amplified and sequenced the V3-V4 regions of the 16S rRNA gene. Sequencing was performed on the Illumina MiSeq platform. According to the rarefaction curve, the sampling effort was sufficient to describe the bacterial diversity in the samples. Alpha-diversity indexes showed that the bacterial microbiota of oysters is richer during the rainy season. This richness is possibly associated with the diversity at lower taxonomic levels, since the relative abundance of bacterial phyla in the two seasons remained relatively constant. The main phyla found include Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Similar results were found for the species Crassostrea gigas, Crassostrea sikamea, and Crassostrea corteziensis. Beta-diversity analysis showed that the bacterial composition of oyster's gut microbiota was quite different in the two seasons. Our data demonstrate the close relationship between the environment and the microbiome of these molluscs, reinforcing the need for conservation and sustainable management of estuaries in the Amazonia.


Sign in / Sign up

Export Citation Format

Share Document