scholarly journals First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016

2022 ◽  
Vol 12 ◽  
Author(s):  
Ronza Hadad ◽  
Daniel Golparian ◽  
Inga Velicko ◽  
Anna-Karin Ohlsson ◽  
Ylva Lindroth ◽  
...  

The increasing transmission and antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health concern with worrying trends of decreasing susceptibility to also the last-line extended-spectrum cephalosporin (ESC) ceftriaxone. A dramatic increase of reported gonorrhea cases has been observed in Sweden from 2016 and onward. The aim of the present study was to comprehensively investigate the genomic epidemiology of all cultured N. gonorrhoeae isolates in Sweden during 2016, in conjunction with phenotypic AMR and clinical and epidemiological data of patients. In total, 1279 isolates were examined. Etest and whole-genome sequencing (WGS) were performed, and epidemiological data obtained from the Public Health Agency of Sweden. Overall, 51.1%, 1.7%, and 1.3% resistance to ciprofloxacin, cefixime, and azithromycin, respectively, was found. No isolates were resistant to ceftriaxone, however, 9.3% of isolates showed a decreased susceptibility to ceftriaxone and 10.5% to cefixime. In total, 44 penA alleles were found of which six were mosaic (n = 92). Using the typing schemes of MLST, NG-MAST, and NG-STAR; 133, 422, and 280 sequence types, respectively, and 93 NG-STAR clonal complexes were found. The phylogenomic analysis revealed two main lineages (A and B) with lineage A divided into two main sublineages (A1 and A2). Resistance and decreased susceptibility to ESCs and azithromycin and associated AMR determinants, such as mosaic penA and mosaic mtrD, were predominantly found in sublineage A2. Resistance to cefixime and azithromycin was more prevalent among heterosexuals and MSM, respectively, and both were predominantly spread through domestic transmission. Continuous surveillance of the spread and evolution of N. gonorrhoeae, including phenotypic AMR testing and WGS, is essential for enhanced knowledge regarding the dynamic evolution of N. gonorrhoeae and gonorrhea epidemiology.

2014 ◽  
Vol 53 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Walter Demczuk ◽  
Tarah Lynch ◽  
Irene Martin ◽  
Gary Van Domselaar ◽  
Morag Graham ◽  
...  

A large-scale, whole-genome comparison of CanadianNeisseria gonorrhoeaeisolates with high-level cephalosporin MICs was used to demonstrate a genomic epidemiology approach to investigate strain relatedness and dynamics. Although current typing methods have been very successful in tracing short-chain transmission of gonorrheal disease, investigating the temporal evolutionary relationships and geographical dissemination of highly clonal lineages requires enhanced resolution only available through whole-genome sequencing (WGS). Phylogenomic cluster analysis grouped 169 Canadian strains into 12 distinct clades. While someN. gonorrhoeaemultiantigen sequence types (NG-MAST) agreed with specific phylogenomic clades or subclades, other sequence types (ST) and closely related groups of ST were widely distributed among clades. Decreased susceptibility to extended-spectrum cephalosporins (ESC-DS) emerged among a group of diverse strains in Canada during the 1990s with a variety of nonmosaicpenAalleles, followed in 2000/2001 with thepenAmosaic X allele and then in 2007 with ST1407 strains with thepenAmosaic XXXIV allele. Five genetically distinct ESC-DS lineages were associated withpenAmosaic X, XXXV, and XXXIV alleles and nonmosaic XII and XIII alleles. ESC-DS with coresistance to azithromycin was observed in 5 strains with 23S rRNA C2599T or A2143G mutations. As the costs associated with WGS decline and analysis tools are streamlined, WGS can provide a more thorough understanding of strain dynamics, facilitate epidemiological studies to better resolve social networks, and improve surveillance to optimize treatment for gonorrheal infections.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Leonor Sánchez-Busó ◽  
Corin A. Yeats ◽  
Benjamin Taylor ◽  
Richard J. Goater ◽  
Anthony Underwood ◽  
...  

Abstract Background Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. Methods Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch (https://pathogen.watch/ngonorrhoeae). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. Results AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. Conclusions The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.


Author(s):  
Leonor Sánchez-Busó ◽  
Corin A. Yeats ◽  
Benjamin Taylor ◽  
Richard J. Goater ◽  
Anthony Underwood ◽  
...  

AbstractBackgroundAntimicrobial resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones, transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance.MethodsHere we present a public health focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch (https://pathogen.watch/ngonorrhoeae). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization.ResultsAMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasizing the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern.ConclusionsThe N. gonorrhoeae scheme in Pathogenwatch provides customized bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigated the mutational and phylogenetic analysis of 30 whole-genome sequences for the virus's genomic characteristics in the specimens collected in the early phase of the pandemic (March–June, 2020) and the sudden surge of local transmission (August–September, 2020). The four samples in the early phase of infection were B.6 lineage and located within a clade of the samples collected at the same time in Singapore and Malaysia, while five returnees by rescue flights showed the lineage B. 1.36.1 (three from India), B.1.1 (one from India) and B.1.80 (one from China). However, there was no evidence of local spread from these returnees. Further, all 19 whole-genome sequences collected in the sudden surge of local transmission showed lineage B.1.36. The surge of the second wave on SARS-CoV-2 infection was linked to the single-introduction of a variant (B.1.36) that may result from the strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


Author(s):  
Lucia Rivas ◽  
Shevaun Paine ◽  
Pierre-Yves Dupont ◽  
Audrey Tiong ◽  
Beverley Horn ◽  
...  

This study describes the epidemiology of listeriosis in New Zealand (NZ) between 1999 and 2018, as well as the retrospective whole genome sequencing (WGS) of 453 Listeria monocytogenes isolates corresponding to 95% of the human cases within this period. The average notified rate of listeriosis was 0.5 cases per 100,000 population and non-pregnancy associated cases were more prevalent than pregnancy-associated cases (average 19 and 5 cases per annum, respectively). Analysis of WGS data was assessed using multi-locus sequencing typing (MLST), including core-genome and whole-genome MLST (cgMLST and wgMLST) and single-nucleotide polymorphism (SNP) analysis. Thirty-nine sequence types (STs) were identified, with the most common being, ST1 (21.9%), ST4 (13.2%), ST2 (11.3%), ST120 (6.1%) and ST155 (6.4%). A total of 291 different cgMLST types were identified, with the majority (n = 243) of types observed as a single isolate, consistent with the observation that listeriosis is predominately sporadic. Amongst the 49 cgMLST types containing two or more isolates, 18 cgMLST types contained 2-4 isolates (50 isolates in total, including three outbreak-associated isolates) that shared low genetic diversity (0-2 whole-genome alleles), some of which were dispersed in time or geographical regions. SNP-analysis also produced comparable results to wgMLST. The low genetic diversity within these clusters suggests a potential common source but incomplete epidemiological data impaired retrospective epidemiological investigations. Prospective use of WGS analysis, together with thorough exposure information from cases will potentially identify future outbreaks more rapidly and possibly those that have been undetected for some time over different geographically regions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Koji Yahara ◽  
Kevin C. Ma ◽  
Tatum D. Mortimer ◽  
Ken Shimuta ◽  
Shu-ichi Nakayama ◽  
...  

Abstract Background Antimicrobial resistance in Neisseria gonorrhoeae is a global health concern. Strains from two internationally circulating sequence types, ST-7363 and ST-1901, have acquired resistance to third-generation cephalosporins, mainly due to mosaic penA alleles. These two STs were first detected in Japan; however, the timeline, mechanism, and process of emergence and spread of these mosaic penA alleles to other countries remain unknown. Methods We studied the evolution of penA alleles by obtaining the complete genomes from three Japanese ST-1901 clinical isolates harboring mosaic penA allele 34 (penA-34) dating from 2005 and generating a phylogenetic representation of 1075 strains sampled from 35 countries. We also sequenced the genomes of 103 Japanese ST-7363 N. gonorrhoeae isolates from 1996 to 2005 and reconstructed a phylogeny including 88 previously sequenced genomes. Results Based on an estimate of the time-of-emergence of ST-1901 (harboring mosaic penA-34) and ST-7363 (harboring mosaic penA-10), and > 300 additional genome sequences of Japanese strains representing multiple STs isolated in 1996–2015, we suggest that penA-34 in ST-1901 was generated from penA-10 via recombination with another Neisseria species, followed by recombination with a gonococcal strain harboring wildtype penA-1. Following the acquisition of penA-10 in ST-7363, a dominant sub-lineage rapidly acquired fluoroquinolone resistance mutations at GyrA 95 and ParC 87-88, by independent mutations rather than horizontal gene transfer. Data in the literature suggest that the emergence of these resistance determinants may reflect selection from the standard treatment regimens in Japan at that time. Conclusions Our findings highlight how antibiotic use and recombination across and within Neisseria species intersect in driving the emergence and spread of drug-resistant gonorrhea.


2016 ◽  
Vol 54 (5) ◽  
pp. 1304-1313 ◽  
Author(s):  
Walter Demczuk ◽  
Irene Martin ◽  
Shelley Peterson ◽  
Amrita Bharat ◽  
Gary Van Domselaar ◽  
...  

The emergence ofNeisseria gonorrhoeaestrains with decreased susceptibility to cephalosporins and azithromycin (AZM) resistance (AZMr) represents a public health threat of untreatable gonorrhea infections. Genomic epidemiology through whole-genome sequencing was used to describe the emergence, dissemination, and spread of AZMrstrains. The genomes of 213 AZMrand 23 AZM-susceptibleN. gonorrhoeaeisolates collected in Canada from 1989 to 2014 were sequenced. Core single nucleotide polymorphism (SNP) phylogenomic analysis resolved 246 isolates into 13 lineages. High-level AZMr(MICs ≥ 256 μg/ml) was found in 5 phylogenetically diverse isolates, all of which possessed the A2059G mutation (Escherichia colinumbering) in all four 23S rRNA alleles. One isolate with high-level AZMrcollected in 2009 concurrently had decreased susceptibility to ceftriaxone (MIC = 0.125 μg/ml). An increase in the number of 23S rRNA alleles with the C2611T mutations (E. colinumbering) conferred low to moderate levels of AZMr(MICs = 2 to 4 and 8 to 32 μg/ml, respectively). Low-level AZMrwas also associated withmtrRpromoter mutations, including the −35A deletion and the presence ofNeisseria meningitidis-like sequences. Geographic and temporal phylogenetic clustering indicates that emergent AZMrstrains arise independently and can then rapidly expand clonally in a region through local sexual networks.


2020 ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of the coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigate mutational and phylogenetic analysis of 30 whole genome sequences for genomic characteristics of the virus in the specimens collected early phase of pandemic, (March-June, 2020) and sudden surge of infection (August-September, 2020). Phylogenetic analysis revealed that 4 samples of L strain and 1 GR strain in early stage of local transmission, while 6 returnees by rescue flights showed GH (India) and GR strains (China and Philippines) with no evidence of local spread. However, all 19 whole genome sequences in sudden surge of local transmission showed genetically distinct clade GH (Lineage B.1.36). Surge of second wave on SARS-CoV-2 infection was linked to the single-introduction of the GH strain that may be a result of strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


Sign in / Sign up

Export Citation Format

Share Document