scholarly journals RNA m1A Methyltransferase TRMT6 Predicts Poorer Prognosis and Promotes Malignant Behavior in Glioma

2021 ◽  
Vol 8 ◽  
Author(s):  
Beibei Wang ◽  
Lihua Niu ◽  
Zhengyang Wang ◽  
Zhihua Zhao

Background: Glioma is the most prevalent central nervous system tumor in humans, and its prognosis remains unsatisfactory due to a lack of effective therapeutic targets. The ectopic expression of N1-methyladenosine (m1A) regulators is a key participant in tumorigenesis and progression. However, the m1A regulator expression status, prognostic value, and relationship with tumor clinical features in glioma remain unclear.Methods: Public datasets were used to analyze the mRNA and protein expression levels of m1A regulators. Kaplan–Meier and Cox regression analyses were performed to confirm the prognostic value of m1A regulators in glioma. Cellular experiments were conducted to verify the effect of TRMT6 on cell function. A comprehensive bioinformatics analysis was conducted to identify the potential molecular mechanisms regulated by TEMT6 in glioma.Results: We found that the dysregulation of m1A regulators was closely associated with tumorigenesis and progression in glioma. Furthermore, TRMT6 might be a powerful and independent biomarker for prognosis in glioma. Our study showed that inhibition of TRMT6 suppressed the proliferation, migration, and invasion of glioma cells. Mechanistically, TRMT6 may be involved in glioma progression by regulating cell cycle, PI3K-AKT, TGF-beta, MTORC1, NOTCH, and MYC pathways.Conclusions: Variation in m1A regulators was closely associated with malignant progression in glioma. Silencing TRMT6 suppressed the cell proliferation, migration, and invasion in glioma. m1A regulators, especially TRMT6, might play an essential role in the malignant progression of glioma.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhanhu Mi ◽  
Yanyun Dong ◽  
Zhibiao Wang ◽  
Peng Ye

Abstract Background Osteosarcoma (OS) is a type of bone cancer that occurs in children and adolescents at a rate of 5%. The purpose of this study is to explore the lncRNA GNAS-AS1 expression profile, prognosis significance in OS, and biological effect on OS cell function. Methods One hundred eight pairs of tissues were collected, and OS cell lines were purchased. lncRNA GNAS-AS1 expression in these tissues and cells were analyzed by qRT-PCR. Clinical data were analyzed using chi-square tests, Kaplan-Meier curves (log-rank test), and Cox regression. CCK-8 and transwell assay were conducted to analyze the effect of lncRNA GNAS-AS1 on cell proliferation, invasion, and migration. The downstream miRNA was presumed. Results The expression of lncRNA GNAS-AS1 was significantly increased in OS cells and tissues, and related to Enneking staging and distant metastasis. Patients with high lncRNA GNAS-AS1 expression represented shorter overall survival and was an independent prognostic predictor of OS. LncRNA GNAS-AS1 knockdown inhibited cell proliferation, migration, and invasion by regulated miR-490-3p partly at least. Conclusions LncRNA GNAS-AS1 can be used as a prognostic indicator and its inhibition suppress the development of OS, suggesting its value as novel therapeutic strategies in OS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Lv ◽  
Qiyi Yi ◽  
Ying Yan ◽  
Fengmei Chao ◽  
Ming Li

Spinster homologue 2 (SPNS2), a transporter of S1P (sphingosine-1-phosphate), has been reported to mediate immune response, vascular development, and pathologic processes of diseases such as cancer via S1P signaling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) is elusive. In this study, we disclosed that SPNS2 expression, which was regulated by copy number variation and DNA methylation of its promoter, was dramatically upregulated in colon adenoma and CRC compared to normal tissues. However, its expression was lower in CRC than in colon adenoma, and low expression of SPN2 correlated with advanced T/M/N stage and poor prognosis in CRC. Ectopic expression of SPNS2 inhibited cell proliferation, migration, epithelial–mesenchymal transition (EMT), invasion, and metastasis in CRC cell lines, while silencing SPNS2 had the opposite effects. Meanwhile, measuring the intracellular and extracellular level of S1P after overexpression of SPNS2 pinpointed a S1P-independent model of SPNS2. Mechanically, SPNS2 led to PTEN upregulation and inactivation of Akt. Moreover, AKT inhibitor (MK2206) abrogated SPNS2 knockdown-induced promoting effects on the migration and invasion, while AKT activator (SC79) reversed the repression of migration and invasion by SPNS2 overexpression in CRC cells, confirming the pivotal role of AKT for SPNS2’s function. Collectively, our study demonstrated the suppressor role of SPNS2 during CRC metastasis, providing new insights into the pathology and molecular mechanisms of CRC progression.


Author(s):  
Xiang-jun Chen ◽  
Sha Liu ◽  
Dong-mei Han ◽  
De-zhi Han ◽  
Wei-jing Sun ◽  
...  

AbstractMelanoma is a common lethal skin cancer. Dissecting molecular mechanisms driving the malignancy of melanoma may uncover potential therapeutic targets. We previously identified miR-145-5p as an important tumor-suppressive microRNA in melanoma. Here, we further investigated the roles of long non-coding RNAs (lncRNAs) in melanoma. We identified RP11-705C15.3, a regulator of miR-145-5p, as an oncogenic lncRNA in melanoma. RP11-705C15.3 competitively bound miR-145-5p, relieved the repressive roles of miR-145-5p on its target NRAS, upregulated NRAS expression, and activated MAPK signaling. In vitro functional assays revealed that ectopic expression of RP11-705C15.3 promoted melanoma cell proliferation, inhibited apoptosis, and promoted migration and invasion. Silencing of RP11-705C15.3 repressed melanoma cell proliferation, induced apoptosis, and repressed migration and invasion. Notably, the roles of RP11-705C15.3 in melanoma cell proliferation, apoptosis, migration and invasion are reversed by miR-145-5p overexpression. In vivo functional assays revealed that RP11-705C15.3 promoted melanoma tumor growth and metastasis, which were also reversed by miR-145-5p overexpression. Furthermore, we investigated the expression of RP11-705C15.3 in clinical melanoma tissues and found that RP11-705C15.3 was increased in melanoma tissues. High expression of RP11-705C15.3 was positively correlated with thickness, ulceration, metastasis, and inferior overall survival. Taken together, our findings suggest RP11-705C15.3 as a novel oncogene in melanoma, and highlight that the RP11-705C15.3/miR-145-5p/NRAS/MAPK signaling axis may be potential therapeutic targets for melanoma.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Xin Shi ◽  
Xingfa Guan

Abstract Background Osteosarcoma (OS) is a malignancy predominantly occurred in children and adolescents. Numerous microRNAs are involved in the pathogenesis of various cancers. This study aimed to investigate the expression profiles of miR-99b and its prognostic value in OS patients, and further analyze the biological function of miR-99b in the tumor progression by using OS cells. Methods Expression of miR-99b was measured using quantitative real-time PCR. Kaplan-Meier survival curves and Cox regression analysis were performed to evaluate the prognostic value of miR-99b. OS cell lines were used to investigate the effects of miR-99b on cell proliferation, migration and invasion. Results A significant decreased expression of miR-99b was observed in the OS tissues and cell lines respectively compared with the normal tissues and cells. Aberrant expression of miR-99b was associated with the patients’ metastasis and TNM stage, and could be used to predict the prognosis of OS. The expression of miR-99b was regulated in vitro by cell transfection, and we found that the overexpression of miR-99b led to suppressed cell proliferation, migration and invasion, whereas the knockdown of miR-99b resulted in the opposite results. Conclusions In one word, the aberrantly expressed miR-99b serves a prognostic biomarker for OS patients. OS cell proliferation, migration and invasion can be inhibited by the overexpression of miR-99b, suggesting that the methods to increase miR-99b expression may be novel therapeutic strategies in OS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Chen ◽  
Chun Hou ◽  
Liu-xin Zhao ◽  
Qiu-chen Cai ◽  
Ying Zhang ◽  
...  

The incidence and associated mortality of lung cancer in tin miners in Gejiu County and farmers in Xuanwei Country, Yunnan Province have been very high in the world. Current published literatures on the molecular mechanisms of lung cancer initiation and progression in Gejiu and Xuanwei County are still controversial. Studies confirmed that microRNA-34a (miR-34a) functioned as a vital tumor suppressor in tumorigenesis and progression. However, the role and precise mechanisms of miR-34a and its regulatory gene network in initiation and progression of lung cancer in Gejiu and Xuanwei County, Yunnan Province, have not been elucidated. In the current study, we first found that miR-34a was downregulated in Gejiu lung squamous carcinoma YTMLC-90, Xuanwei lung adenocarcinoma XWLC-05, and other non-small cell lung carcinoma (NSCLC) cell lines, and miR-34a overexpression inhibited cell proliferation, migration and invasion, as well as induced cell apoptosis in YTMLC-90 and XWLC-05 cells. Our findings revealed that miR-34a is critical and cannot be considered as the area-specific non-coding RNA in initiation and progression of lung cancer in Gejiu and Xuanwei County. Next we revealed that miR-34a overexpression suppressed lung cancer growth and metastasis partially via increasing PTEN but reducing CDK6 expression that might lead to subsequent inactivation of PI3K/AKT pathway. Furthermore, our findings demonstrated that YY1 functioned as a tumor suppressor gene in initiation and progression of lung cancer in Gejiu and Xuanwei County. In conclusion, our findings in the study confirmed that miR-34a overexpression could simultaneously suppress tumor growth and metastasis and play a vital role in tumorigenesis and progression of NSCLC via increasing PTEN and YY1 expression, but decreasing CDK6. Most interestingly, our findings also raised doubts about the current ideas about these area-specific diseases.


2008 ◽  
Vol 295 (1) ◽  
pp. G153-G162 ◽  
Author(s):  
Dharmaraj Chinnappan ◽  
Xiangping Qu ◽  
Dongmei Xiao ◽  
Anita Ratnasari ◽  
H. Christian Weber

Ectopic expression of the gastrin-releasing peptide (GRP) receptor (GRP-R) occurs frequently in human malignancies of the gastrointestinal tract. Owing to paracrine and autocrine interaction with its specific high-affinity ligand GRP, tumor cell proliferation, migration, and invasion might ensue. Here we provide the first insights regarding molecular mechanisms of GRP-R regulation in gastrointestinal cancer cells. We identified by EMSA and chromatin immunoprecipitation assays two cAMP response element (CRE) binding sites that recruited transcription factor CRE binding protein (CREB) to the human GRP-R promoter. Transfection studies with a wild-type human GRP-R promoter reporter and corresponding CRE mutants showed that both CRE sites are critical for basal transcriptional activation in gastrointestinal cancer cells. Forced expression of cAMP-dependent effectors CREB and PKA resulted in robust upregulation of human GRP-R transcriptional activity, and this overexpression strictly required intact wild-type CRE sites. Direct cAMP stimulation with forskolin resulted in enhanced human GRP-R promoter activity only in HuTu-80 cells, but not in Caco-2 cells, coinciding with forskolin-induced CREB phosphorylation occurring only in HuTu-80 but not Caco-2 cells. In summary, CREB is a critical regulator of human GRP-R expression in gastrointestinal cancer and might be activated through different upstream intracellular pathways.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhong Zheng ◽  
Jun Li ◽  
Junyan An ◽  
Yikuan Feng ◽  
Lirong Wang

Abstract Background Gastric cancer (GCa) is one of the six major malignancies in the world with low survival rate. Although there are advances in therapeutic approaches, the prognosis of patients with GCa remains not optimistic. Therefore, this study aimed to evaluate the prognostic value of miR-324-5p, as well as its functional role in GCa progression. Methods The expression of miR-324-5p in tumor tissues and cell lines was examined using real-time quantitative PCR. The prognostic value of miR-324-5p in patients with GCa was evaluated by Kaplan-Meier survival curve and Cox regression analysis. Gain- and loss-of-function experiments were performed to evaluate the biological function of miR-324-5p during the progression of GCa, and a target gene of miR-324-5p was proposed. Results The expression of miR-324-5p was up-regulated in GCa tissues and cell lines. Patients with high expression of miR-324-5p had more cases with positive lymph node metastasis, advanced TNM stage, and worse overall survival compared with patients with low expression. The elevated miR-324-5p was an independent prognostic indicator of GCa. In addition, the inhibition of miR-324-5p could suppress GCa cell proliferation, migration and invasion and promote cell apoptosis, and PTEN was demonstrated to serve as a direct target of miR-324-5p in GCa progression. Conclusion The present study indicates that miR-324-5p overexpression predicts poor prognosis in GCa patients, and the reduction of miR-324-5p can inhibit GCa biological processes. PTEN is a target gene of GCa, which may mediate the biological function of miR-324-5p in GCa progression.


2021 ◽  
Author(s):  
Hui Li ◽  
Shufen Zhao ◽  
Liwei Shen ◽  
Peige Wang ◽  
Shihai Liu ◽  
...  

Abstract BackgroundE2F2 is a member of the E2F transcription factor family and has important but not fully understood biological functions in cancers. The pro- and antitumor functions of E2F2 in some cancer types are controversial. However, the biological role of E2F2 in gastric cancer (GC) remains unclear.MethodsE2F2 expression from multiple gene expression databases was analyzed. Kaplan-Meier plots and Cox regression were used to analyze the prognostic value of E2F2 expression. The correlation between E2F2 and tumor immune infiltration was investigated using the Tumor Immune Estimation Resource (TIMER) database. The functions and pathways of E2F2 and its 50 most highly correlated genes in terms of expression pattern were analyzed using Database Annotation, Visualization, and Integrated Discovery (DAVID) software. We used immunohistochemistry, real-time quantitative polymerase chain reaction, and western blotting to detect the expression level of E2F2 in GC. We further investigated the effects of E2F2 on phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling, autophagy, and the migration and invasion of GC cells by the wound healing assay, Transwell assay, western blotting, and transmission electron microscopy.ResultsE2F2 was highly expressed in both GC tissues and cells compared with normal gastric tissues/cells in public datasets and our validation experiments. High E2F2 expression was associated with poor overall survival (OS). In addition, the expression of E2F2 in GC had a strong correlation with a variety of immune markers. E2F2 overexpression promoted the migration and invasion of GC cells in vitro through the inhibition of PI3K/Akt/mTOR-mediated autophagy. In contrast, inhibition of E2F2 inhibited the migration and invasion of GC cells in vitro by activating PI3K/Akt/mTOR-mediated autophagy.ConclusionThis study provides multilevel evidence for the significance of E2F2 in the pathogenesis of GC and its potential as a biomarker for GC. E2F2 was highly expressed in GC, and high E2F2 expression was associated with the characteristics of invasive tumors and poor prognosis. E2F2 had potential modulatory effects on tumor immunity. We found a novel function of E2F2 in the regulation of PI3K/Akt/mTOR-mediated autophagy and the downstream process of cell migration and invasion. Our results may provide novel targets and strategies for the diagnosis and treatment of GC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunhe Han ◽  
Cunyi Zou ◽  
Chen Zhu ◽  
Tianqi Liu ◽  
Shuai Shen ◽  
...  

Objective: Nectin and nectin-like molecules (Necls) are molecules that are involved in cell–cell adhesion and other vital cellular processes. This study aimed to determine the expression and prognostic value of nectin and Necls in low grade glioma (LGG).Materials and Methods: Differentially expressed nectin and Necls in LGG samples and the relationship of nectin family and Necls expression with prognosis, clinicopathological parameters, and survival were explored using The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), and Repository of Molecular Brain Neoplasia Data (REMBRANDT) databases. Univariate and multivariate Cox analysis models were performed to construct the prognosis-related gene signature. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves and multivariate Cox regression analysis, were utilized to evaluate the prognostic capacity of the four-gene signature. Gene ontology (GO)enrichment analysis and Gene Set Enrichment Analyses (GSEA) were performed to further understand the underlying molecular mechanisms. The Tumor Immune Estimation Resource (TIMER) was used to explore the relationship between the four-gene signature and tumor immune infiltration.Results: Several nectin and Necls were differentially expressed in LGG. Kaplan–Meier survival analyses and Univariate Cox regression showed patients with high expression of NECTIN2 and PVR and low expression of CADM2 and NECTIN1 had worse prognosis among TCGA, CGGA, and REMBRANDT database. Then, a novel four-gene signature was built for LGG prognosis prediction. ROC curves, KM survival analyses, and multivariate COX regression indicated the new signature was an independent prognostic indicator for overall survival. Finally, GSEA and GO enrichment analyses revealed that immune-related pathways participate in the molecular mechanisms. The risk score had a strong negative correlation with tumor purity and data of TIMER showed different immune cell proportions (macrophage and myeloid dendritic cell) between high- and low-risk groups. Additionally, signature scores were positively related to multiple immune-related biomarkers (IL 2, IL8 and IFNγ).Conclusion: Our results offer an extensive analysis of nectin and Necls levels and a four-gene model for prognostic prediction in LGG, providing insights for further investigation of CADM2, NECTIN1/2, and PVR as potential clinical and immune targets in LGG.


Sign in / Sign up

Export Citation Format

Share Document