scholarly journals Editorial: Transport of Nutrients, Metabolites and Ions Linked to Bioenergetics: Relevance to Human Pathology

2021 ◽  
Vol 8 ◽  
Author(s):  
Mariafrancesca Scalise ◽  
Piotr Koprowski ◽  
Cesare Indiveri
Keyword(s):  
2020 ◽  
Vol 27 (19) ◽  
pp. 3123-3150 ◽  
Author(s):  
Renata Kozyraki ◽  
Olivier Cases

Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.


1927 ◽  
Vol 61 (673) ◽  
pp. 151-159
Author(s):  
C. L. Shear
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estela Area-Gomez ◽  
D. Larrea ◽  
T. Yun ◽  
Y. Xu ◽  
J. Hupf ◽  
...  

AbstractMotor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.


2002 ◽  
Vol 15 (2) ◽  
pp. 293-314 ◽  
Author(s):  
Hugh Galbraith

AbstractBeef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds (‘hormones’) to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17β and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17β as a carcinogen in certain tissues. Now subject to a ‘permanent’ EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate proliferation in cells maintaining receptivity. Mathematical models describing quantitative relationships between consumption of small amounts of oestrogens in meat in addition to greater concentrations from endogenous production, chemical stoichiometry at cellular level and human pathology have not been developed. Such an approach will be necessary to establish ‘molecular materiality’ of the additional hormone intake as a component of relative risk assessment. The other hormones, although generally less well researched, are similarly subject to a range of tests to determine potentially adverse effects. The resulting limited international consensus relates to the application of the ‘precautionary principle’ and non-acceptance by the European Commission of the recommendations of the Codex Alimentarius Commission, which determined that meat from cattle, hormone-treated according to good practice, was safe for human consumers. The present review considers the hormone issue in the context of current international social methodology and regulation, recent advances in knowledge of biological activity of hormones and current status of science-based evaluation of food safety and risk for human consumers.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii295-iii295
Author(s):  
Annette Wu ◽  
Tak Mak ◽  
Jerome Fortin

Abstract Diffuse midline gliomas (DMGs) are aggressive childhood brain tumors with a dismal prognosis. Most of these tumors carry K27M mutations in histone H3-encoding genes, particularly H3F3A and HIST1H3B. In addition, activating mutations in ACVR1 and PIK3CA co-occur in a subset of DMGs. To understand how these lesions drive the development of DMGs, we generated genetically engineered mouse models in which Acvr1G328V, Hist1h3bK27M, and Pik3caH1047R are targeted to the OLIG2-expressing cell lineage. Animals carrying Acvr1G328V and Pik3caH1047R, with (“AHPO”) or without (“APO”) Hist1h3bK27M, developed high-grade diffuse gliomas involving midline and forebrain regions. Neither Acvr1G328V nor Pik3caH1047R drove tumorigenesis by themselves, but Acvr1G328V was sufficient to cause oligodendroglial differentiation arrest, pointing to a role in the earliest stages of gliomas formation. Transcriptomic analyses of AHPO and APO tumors indicated a predominantly proneural and oligodendrocyte precursor-like gene expression signature, consistent with the corresponding human pathology. Genes encoding transcription factors (TFs) with dual roles in controlling glial and neuronal differentiation were upregulated in tumors. Some of these genes were mildly induced by Acvr1G328V alone. Functional experiments using CRISPR/Cas9-mediated gene editing in patient-derived cell lines confirmed a role for some of these TFs in controlling DMG cell fitness. Overall, our results suggest that Pik3caH1047R consolidates Acvr1G328V-induced glial differentiation arrest to drive DMG development and progression.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 160
Author(s):  
Akihiko Yamamoto ◽  
Takashi Ito ◽  
Toru Hifumi

Disseminated intravascular coagulation, a severe clinical condition caused by an underlying disease, involves a markedly continuous and widespread activation of coagulation in the circulating blood and the formation of numerous microvascular thrombi. A snakebite, including that of the Yamakagashi (Rhabdophis tigrinus), demonstrates this clinical condition. Thus, an animal model using Yamakagashi venom was constructed. Yamakagashi venom was administered to rats, and its lethality and the changes in blood coagulation factors were detected after venom injection. When 300 μg venom was intramuscularly administered to 12-week-old rats, (1) they exhibited hematuria with plasma hemolysis and died within 48 h; (2) Thrombocytopenia in the blood was observed in the rats; (3) irreversible prolongation of prothrombin time in the plasma to the measurement limit occurred; (4) fibrinogen concentration in the plasma irreversibly decreased below the measurement limit; and (5) A transient increase in the plasma concentration of D-dimer was observed. In this model, a fixed amount of Rhabdophis tigrinus venom injection resulted in the clinical symptom similar to the human pathology with snakebite. The use of the rat model is very effective in validating the therapeutic effect of human disseminated intravascular coagulation condition due to snakebite.


2010 ◽  
Vol 2 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Opeolu Adeoye ◽  
Joseph F. Clark ◽  
Pooja Khatri ◽  
Kenneth R. Wagner ◽  
Mario Zuccarello ◽  
...  

The Lancet ◽  
1938 ◽  
Vol 231 (5978) ◽  
pp. 720-721 ◽  
Author(s):  
Henrik Dam ◽  
Johannes Glavind
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document