scholarly journals Structure Determination of Microtubules and Pili: Past, Present, and Future Directions

2022 ◽  
Vol 8 ◽  
Author(s):  
James A. Garnett ◽  
Joseph Atherton

Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.

Author(s):  
Olga Wronikowska ◽  
Maria Zykubek ◽  
Agnieszka Michalak ◽  
Anna Pankowska ◽  
Paulina Kozioł ◽  
...  

AbstractMephedrone is a widely used drug of abuse, exerting its effects by interacting with monoamine transporters. Although this mechanism has been widely studied heretofore, little is known about the involvement of glutamatergic transmission in mephedrone effects. In this study, we comprehensively evaluated glutamatergic involvement in rewarding effects of mephedrone using an interdisciplinary approach including (1) behavioural study on effects of memantine (non-selective NMDA antagonist) on expression of mephedrone-induced conditioned place preference (CPP) in rats; (2) evaluation of glutamate concentrations in the hippocampus of rats following 6 days of mephedrone administration, using in vivo magnetic resonance spectroscopy (MRS); and (3) determination of glutamate levels in the hippocampus of rats treated with mephedrone and subjected to MRS, using ion-exchange chromatography. In the presented research, we confirmed priorly reported mephedrone-induced rewarding effects in the CPP paradigm and showed that memantine (5 mg/kg) was able to reverse the expression of this effect. MRS study showed that subchronic mephedrone administration increased glutamate level in the hippocampus when measured in vivo 24 h (5 mg/kg, 10 mg/kg and 20 mg/kg) and 2 weeks (5 mg/kg and 20 mg/kg) after last injection. Ex vivo chromatographic analysis did not show significant changes in hippocampal glutamate concentrations; however, it showed similar results as obtained in the MRS study proving its validity. Taken together, the presented study provides new insight into glutamatergic involvement in rewarding properties of mephedrone.


2011 ◽  
Vol 44 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Pavel Strunz ◽  
Gerhard Schumacher ◽  
Hellmuth Klingelhöffer ◽  
Albrecht Wiedenmann ◽  
Jan Šaroun ◽  
...  

Exposure of a superalloy to an external load results in anisotropic coarsening of the γ′ precipitates, so-called rafting. It was reported in the past that γ′ rafting can also occur as a result of purely thermal treatment, without the simultaneous presence of an external load, if the specimen has been pre-deformed at relatively low temperature. The evolution of γ′ morphology in pre-deformed specimens of SCA425 Ni-base superalloy was examined in the present study. Unlike in the previous experiments, the compressive stress was used for pre-straining.In situsmall-angle neutron scattering (SANS) was employed, which enabled the determination of the morphology directly at high temperature. Both for strong and for weak pre-straining, rounding of the originally cuboidal precipitates towards an ellipsoidal shape on heating was observed. Weak pre-straining (0.1, 0.5%) does not cause rafting on subsequent heating. On the other hand, the detailed evaluation of SANS data provides some indication of rafting during the subsequent heating after severe compressive pre-straining (2%). The experiment indicates the role of dislocation rearrangement at the matrix/precipitate interface during pre-straining.


2020 ◽  
Vol 319 (4) ◽  
pp. L661-L669
Author(s):  
Samir Gautam ◽  
Yannick Stahl ◽  
Grant M. Young ◽  
Rebecca Howell ◽  
Avi J. Cohen ◽  
...  

The past two decades have witnessed a resurgence in neutrophil research, inspired in part by the discovery of neutrophil extracellular traps (NETs) and their myriad roles in health and disease. Within the lung, dysregulation of neutrophils and NETosis have been linked to an array of diseases including pneumonia, cystic fibrosis, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and severe asthma. However, our understanding of pathologic neutrophil responses in the lung remains incomplete. Two methodologic issues have contributed to this gap: first, an emphasis on studying neutrophils from blood rather than the lung and second, the technical difficulties of interrogating neutrophil responses in mice, which has largely restricted basic murine research to specialized laboratories. To address these limitations, we have developed a suite of techniques for studying neutrophil effector functions specifically in the mouse lung. These include ex vivo assays for phagocytosis and NETosis using bronchoalveolar neutrophils and in situ evaluation of NETosis in a murine model of pneumonia. Throughout, we have prioritized technical ease and robust, quantitative readouts. We hope these assays will help to standardize research on lung neutrophils and improve accessibility to this burgeoning field.


2022 ◽  
Vol 23 (2) ◽  
pp. 904
Author(s):  
Emma Verheye ◽  
Jesús Bravo Melgar ◽  
Sofie Deschoemaeker ◽  
Geert Raes ◽  
Anke Maes ◽  
...  

Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.


2020 ◽  
Vol 15 (4) ◽  
pp. 279-286 ◽  
Author(s):  
Wei Chen ◽  
Kewei Liu

Background: Pseudouridine (Ψ) is the most abundant RNA modification and has important functions in a series of biological and cellular processes. Although experimental techniques have made great contributions to identify Ψ sites, they are still labor-intensive and costineffective. In the past few years, a series of computational approaches have been developed, which provided rapid and efficient approaches to identify Ψ sites. Results: To provide the readership with a clear landscape about the recent development in this important area, in this review, we summarized and compared the representative computational approaches developed for identifying Ψ sites. Moreover, future directions in computationally identifying Ψ sites were discussed as well. Conclusion: We anticipate that this review will provide novel insights into the researches on pseudouridine modification.


Geophysics ◽  
1939 ◽  
Vol 4 (3) ◽  
pp. 176-183 ◽  
Author(s):  
L. L. Nettleton

This paper outlines a method whereby the density factor used in the Bouguer correction for elevation of a gravity station may be determined. Frequently in the past it has been the practice to assign a density factor based on measurements made upon samples of surface materials in such manner as to give the density in situ, depending upon the judgment of the field man to select samples representative of the near-surface materials. At best, this is a cursory determination which only fortuitously might lead to the correct density for large topographic features. The method outlined here in effect weighs the topography by gravimeter observations taken along a profile crossing the feature. From these data the effective density of the material comprising the topographic feature is determined by a simple graphtcal method.


2019 ◽  
Vol 7 ◽  
pp. 122
Author(s):  
M. Kokkoris ◽  
S. Kossionides ◽  
T. Paradellis ◽  
Ch. Zarkadas ◽  
E. N. Gazis ◽  
...  

The energy loss of channeled protons in silicon has been measured in the past in the transmission geometry and was found to be approximately half of the normal loss, thus confirming the equipartition rule. Other measurements however, concerning different crystals (e.g. Ge), deviated from this theory. In the backscattering geometry, the most successful corresponding attempts combined RBS with the nuclear resonance phenomenon. Nevertheless, they involved ether considerable additions to the standard goniometer setup commonly used, or tedious Monte-Carlo calculations, thus limiting their applicability. ïïi the present work, a method for the determination of the energy loss and dechanneling probabilities of axially channeled protons in silicon [100], in the energy range Ep = 1.7-2.6 MeV, is presented. It is carried out in situ, using the same experimental setup and beam properties (size, divergence) with the ones present in the actual analysis of a sample. The results obtained are in good agreement with already existing values in literature.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document