scholarly journals Functional Connectivity and Compensation of Phonemic Fluency in Aging

2021 ◽  
Vol 13 ◽  
Author(s):  
Rosaleena Mohanty ◽  
Lissett Gonzalez-Burgos ◽  
Lucio Diaz-Flores ◽  
J-Sebastian Muehlboeck ◽  
José Barroso ◽  
...  

Neural compensatory mechanisms associated with broad cognitive abilities have been studied. However, those associated with specific cognitive subdomains (e.g., verbal fluency) remain to be investigated in healthy aging. Here, we delineate: (a) neural substrates of verbal (phonemic) fluency, and (b) compensatory mechanisms mediating the association between these neural substrates and phonemic fluency. We analyzed resting-state functional magnetic resonance imaging from 133 right-handed, cognitively normal individuals who underwent the Controlled Oral Word Association Test (COWAT) to record their phonemic fluency. We evaluated functional connectivity in an established and extended language network comprising Wernicke, Broca, thalamic and anti-correlated modules. (a) We conducted voxel-wise multiple linear regression to identify the brain areas associated with phonemic fluency. (b) We used mediation effects of cognitive reserve, measured by the Wechsler Adult Intelligence Scale—Information subtest, upon the association between functional connectivity and phonemic fluency tested to investigate compensation. We found that: (a) Greater functional connectivity between the Wernicke module and brain areas within the anti-correlated module was associated with better performance in phonemic fluency, (b) Cognitive reserve was an unlikely mediator in younger adults. In contrast, cognitive reserve was a partial mediator of the association between functional connectivity and phonemic fluency in older adults, likely representing compensation to counter the effect of aging. We conclude that in healthy aging, higher performance in phonemic fluency at older ages could be attributed to greater functional connectivity partially facilitated by higher cognitive reserve, presumably reflecting compensatory mechanisms to minimize the effect of aging.

Author(s):  
Gianluca Susi ◽  
Jaisalmer de Frutos-Lucas ◽  
Guiomar Niso ◽  
Su Miao Ye-Chen ◽  
Luis Antón Toro ◽  
...  

Oscillatory activity present in brain signals reflects the underlying time-varying electrical discharges within and between ensembles of neurons. Among the variety of non-invasive techniques available for measuring of the brain’s oscillatory activity, magnetoencephalography (MEG) presents a remarkable combination of spatial and temporal resolution, and can be used in resting-state or task-based studies, depending on the goals of the experiment. Two important kinds of analysis can be carried out with the MEG signal: spectral a. and functional connectivity (FC) a. While the former provides information on the distribution of the frequency content within distinct brain areas, FC tells us about the dependence or interaction between the signals stemming from two (or among many) different brain areas. The large frequency range combined with the good resolution offered by MEG makes MEG-based spectral and FC analyses able to highlight distinct patterns of neurophysiological alterations during the aging process in both healthy and pathological conditions. Since disruption in spectral content and functional interactions between brain areas could be accounted for by early neuropathological changes, MEG could represent a useful tool to unveil neurobiological mechanisms related to the cognitive decline observed during aging, particularly suitable for the detection of functional alterations, and then for the discovery of potential biomarkers in case of pathology. The aging process is characterized by alterations in the spectral content across the brain. At the network level, FC studies reveal that older adults experience a series of changes that make them more vulnerable to cognitive interferences. While special attention has been dedicated to the study of pathological conditions (in particular, mild cognitive impairment and Alzheimer’s disease), the lack of studies addressing the features of FC in healthy aging is noteworthy. This area of research calls for future attention because it is able to set the baseline from which to draw comparisons with different pathological conditions.


2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
A Kremer ◽  
T Buchwald ◽  
M Vetter ◽  
A Dörfler ◽  
C Forster

2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2021 ◽  
Author(s):  
Yusi Chen ◽  
Qasim Bukhari ◽  
Tiger Wutu Lin ◽  
Terrence J Sejnowski

Recordings from resting state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of ''ground truth'' has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. Applied to synthetic datasets, dCov-FC was more effective than covariance and partial correlation in reducing false positive connections and more accurately matching the underlying structural connectivity. When we applied dCov-FC to resting state fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose rs-fMRI were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration causally related to behavior.


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


Sign in / Sign up

Export Citation Format

Share Document