scholarly journals proNGF Measurement in Cerebrospinal Fluid Samples of a Large Cohort of Living Patients With Alzheimer's Disease by a New Automated Immunoassay

2021 ◽  
Vol 13 ◽  
Author(s):  
Francesca Malerba ◽  
Ivan Arisi ◽  
Rita Florio ◽  
Chiara Zecca ◽  
Maria Teresa Dell'Abate ◽  
...  

The discovery of new biomarkers for Alzheimer's disease (AD) is essential for an accurate diagnosis, to conceive new strategies of treatments, and for monitoring the efficacy of potential disease-modifying therapies in clinical trials. proNGF levels in the cerebrospinal fluid (CSF) represent a promising diagnostic biomarker for AD, but its validation was hampered by the absence of a reliable immunoassay. In the literature, proNGF is currently measured in postmortem brain tissue by semiquantitative immunoblot. Here we describe the development and validation of a new method to measure proNGF in the CSF of living patients. This method, based on molecular size separation by capillary electrophoresis, is automated and shows a 40-fold increase in sensitivity with respect to the proNGF immunoblot, largely used in literature, and is robust, specific, and scalable to high-throughput. We have measured proNGF in the cerebrospinal fluid of 84 living patients with AD, 13 controls, and 15 subjective memory complaints (SMC) subjects. By comparing the proNGF levels in the three groups, we found a very significant difference between proNGF levels in AD samples compared with both controls and SMC subjects, while no significant difference was found between SMC and controls. Because of the development of this new immunoassay, we are ready to explore the potentiality of proNGF as a new biomarker for AD or subgroups thereof, as well as for other neurodegenerative diseases.

2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


2013 ◽  
Vol 33 (8) ◽  
pp. 1251-1258 ◽  
Author(s):  
Karin Hultman ◽  
Sidney Strickland ◽  
Erin H Norris

Evidence indicates a critical role for cerebrovascular dysfunction in Alzheimer's disease (AD) pathophysiology. We have shown that fibrin(ogen), the principal blood-clotting protein, is deposited in the AD neurovasculature and interacts with beta-amyloid (Ab), resulting in increased formation of blood clots. As apolipoprotein E (ApoE), a lipid-transporting protein with three human isoforms (E2, E3, and E4), also binds to Aβ, we hypothesized that ApoE and fibrin(ogen) may have a combined effect on the vascular pathophysiology in AD. We assessed whether APOE genotype differentially influences vascular fibrin(ogen) deposition in postmortem brain tissue using immunohistochemistry. An increased deposition of fibrin(ogen) was observed in AD cases compared with non-demented controls, and there was a strong correlation between cerebral amyloid angiopathy (CAA) severity and fibrin(ogen) deposition. Moreover, brains from AD cases homozygous for APOE ε4 showed increased deposition of fibrin(ogen), specifically in CAA- and oligomeric Aβ-positive vessels compared with AD APOE ε2 and ε3 allele carriers, an effect that was not directly linked to CAA severity and cerebrovascular atherosclerosis. These data further support a role for fibrin(ogen) in AD pathophysiology and link the APOE ε4/ε4 genotype with increased thrombosis and/or impaired fibrinolysis in the human AD brain.


2019 ◽  
Vol 90 (7) ◽  
pp. 740-746 ◽  
Author(s):  
Martha S Foiani ◽  
Claudia Cicognola ◽  
Natalia Ermann ◽  
Ione O C Woollacott ◽  
Carolin Heller ◽  
...  

BackgroundFrontotemporal dementia (FTD) is a pathologically heterogeneous neurodegenerative disorder associated usually with tau or TDP-43 pathology, although some phenotypes such as logopenic variant primary progressive aphasia are more commonly associated with Alzheimer’s disease pathology. Currently, there are no biomarkers able to diagnose the underlying pathology during life. In this study, we aimed to investigate the potential of novel tau species within cerebrospinal fluid (CSF) as biomarkers for tau pathology in FTD.Methods86 participants were included: 66 with a clinical diagnosis within the FTD spectrum and 20 healthy controls. Immunoassays targeting tau fragments N-123, N-mid-region, N-224 and X-368, as well as a non-phosphorylated form of tau were measured in CSF, along with total-tau (T-tau) and phospho-tau (P-tau(181)). Patients with FTD were grouped based on their Aβ42 level into those likely to have underlying Alzheimer’s disease (AD) pathology (n=21) and those with likely frontotemporal lobar degeneration (FTLD) pathology (n=45). The FTLD group was then subgrouped based on their underlying clinical and genetic diagnoses into those with likely tau (n=7) or TDP-43 (n=18) pathology.ResultsSignificantly higher concentrations of tau N-mid-region, tau N-224 and non-phosphorylated tau were seen in both the AD group and FTLD group compared with controls. However, none of the novel tau species showed a significant difference between the AD and FTLD groups, nor between the TDP-43 and tau pathology groups. In a subanalysis, normalising for total-tau, none of the novel tau species provided a higher sensitivity and specificity to distinguish between tau and TDP-43 pathology than P-tau(181)/T-tau, which itself only had a sensitivity of 61.1% and specificity of 85.7% with a cut-off of <0.109.ConclusionsDespite investigating multiple novel CSF tau fragments, none show promise as an FTD biomarker and so the quest for in vivo markers of FTLD-tau pathology continues.


2000 ◽  
Vol 38 (7) ◽  
pp. 2591-2594 ◽  
Author(s):  
Robert H. Ring ◽  
Joseph M. Lyons

Epidemiological studies have yet to identify a single cause for the most common late-onset form of Alzheimer's disease. The common respiratory pathogen Chlamydia pneumoniae recently has been implicated as a risk factor for this form of Alzheimer's disease. Were this true, there would be a dramatic shift in current paradigms of Alzheimer's disease research and treatment. In the absence of published confirmation, we obtained postmortem brain tissue from late-onset Alzheimer's disease patients (n = 15) and representative controls (n = 5) and extracted DNA from up to six separate brain regions in each instance, including those areas particularly relevant to Alzheimer's disease neuropathology. Each sample of DNA (n = 101) was assayed five times or more for the presence of C. pneumoniae DNA using a nested-PCR protocol targeting a species-specific gene sequence coding for the major outer membrane protein of this organism. We were unable unequivocally to detect C. pneumoniae in any of the 101 samples tested by PCR and failed to culture the organism from tissue samples. We conclude that C. pneumoniae is neither strongly nor uniquely associated with the neuropathology seen in late-onset Alzheimer's disease.


2020 ◽  
Author(s):  
Olivier BOUSIGES ◽  
Nathalie Philippi ◽  
Thomas Lavaux ◽  
Armand Perret-Liaudet ◽  
Ingolf Lachmann ◽  
...  

Abstract Background: Several studies have investigated the value of alpha-synuclein assay in the cerebrospinal fluid (CSF) of Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) patients in the differential diagnosis of these two pathologies. However, very few studies have focused on this assay in AD and DLB patients at the MCI stage.Methods: All patients were enrolled under a hospital clinical research protocol from the tertiary Memory Clinic (CM2R) of Alsace, France, by an experienced team of clinicians. A total of 166 patients were included in this study: 21 control subjects (CS), 51 patients with DLB at the prodromal stage (pro-DLB), 16 patients with DLB at the demented stage (DLB-d), 33 AD patients at the prodromal stage (pro-AD), 32 AD patients at the demented stage (AD-d) and 13 patients with mixed pathology (AD+DLB). CSF levels of total alpha-synuclein were assessed using a commercial enzyme-linked immunosorbent assay (ELISA) for alpha-synuclein (AJ Roboscreen). Alzheimer’s biomarkers (t-Tau, P-Tau, Aβ42 and Aβ40) were also measured.Results: The alpha-synuclein assays showed a significant difference between the AD and DLB groups. Total alpha-synuclein levels were significantly higher in AD patients than in DLB patients. Interestingly, the levels appeared to be altered from the prodromal stage in both AD and DLB. Furthermore, alpha-synuclein levels were elevated not only in AD patients with a typical “Alzheimer” profile (i.e. 2 or 3 pathological biomarkers) but also in AD patients with an atypical “Alzheimer” profile (i.e. one or no pathological biomarkers).Conclusions: The modification of total alpha-synuclein levels in the CSF of patients occurs early, from the prodromal stage. Moreover, alpha-synuclein assay appears to be of particular interest in the differential diagnosis of AD in cases where the Alzheimer biomarkers do not have a typical profile of the disease, i.e. when there is only one or no pathological biomarkers.Trial registration: ClinicalTrials.gov, (AlphaLewyMa, Identifier: NCT01876459)


2006 ◽  
Vol 14 (7S_Part_21) ◽  
pp. P1115-P1116
Author(s):  
Sharvari Vadeyar ◽  
Francesca North ◽  
James Turton ◽  
Tamar Guetta-Baranes ◽  
Sally Chappell ◽  
...  

2006 ◽  
Vol 57 (1) ◽  
pp. 172-180 ◽  
Author(s):  
Michael J. House ◽  
Timothy G. St. Pierre ◽  
Kris V. Kowdley ◽  
Thomas Montine ◽  
James Connor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document