scholarly journals Brain Activity and Functional Connectivity Patterns Associated With Fast and Slow Motor Sequence Learning in Late Middle Adulthood

2022 ◽  
Vol 13 ◽  
Author(s):  
Maite Aznárez-Sanado ◽  
Luis Eudave ◽  
Martín Martínez ◽  
Elkin O. Luis ◽  
Federico Villagra ◽  
...  

The human brain undergoes structural and functional changes across the lifespan. The study of motor sequence learning in elderly subjects is of particularly interest since previous findings in young adults might not replicate during later stages of adulthood. The present functional magnetic resonance imaging (fMRI) study assessed the performance, brain activity and functional connectivity patterns associated with motor sequence learning in late middle adulthood. For this purpose, a total of 25 subjects were evaluated during early stages of learning [i.e., fast learning (FL)]. A subset of these subjects (n = 11) was evaluated after extensive practice of a motor sequence [i.e., slow learning (SL) phase]. As expected, late middle adults improved motor performance from FL to SL. Learning-related brain activity patterns replicated most of the findings reported previously in young subjects except for the lack of hippocampal activity during FL and the involvement of cerebellum during SL. Regarding functional connectivity, precuneus and sensorimotor lobule VI of the cerebellum showed a central role during improvement of novel motor performance. In the sample of subjects evaluated, connectivity between the posterior putamen and parietal and frontal regions was significantly decreased with aging during SL. This age-related connectivity pattern may reflect losses in network efficiency when approaching late adulthood. Altogether, these results may have important applications, for instance, in motor rehabilitation programs.

2018 ◽  
Author(s):  
Luis Eudave Ramos

Previous research on motor sequence learning (MSL) in the elderly has focused mainly on unilateral tasks, even though bilateral coordination might be impaired in this age group. In this fMRI study, 28 right-handed elderly subjects were recruited. The paradigm consisted of a Novel and a simple Control sequence executed with the right (R), left (L) and both hands (B). Behavioral performance (Accuracy[AC], Inter-tap Interval[ITI]) and associated brain activity were assessed during early learning. Behavioral performance in the Novel task was similar between unilateral conditions whereas in the bimanual condition more errors and slower motor execution were observed. Brain activity increases during learning showed differences between Conditions: R showed increased activity in pre-SMA, basal ganglia and left hippocampus while B showed activity increments mainly in posterior parietal cortex and cerebellum. L did not show any activity modulation during learning. Performance correlates for AC (related to spatial success) and ITI (related to accurate timing) shared a cortico-basal-cerebellar network. However, it was found that the ITI regressor presented additional significant correlations with activity in SMA and basal ganglia in R. The AC regressor showed additional significant correlations with activity in more extended thalamic and cerebellar areas in B. The present findings suggest that, behaviorally, the spatial and temporal components of MSL are impaired in elderly subjects when using both hands. Additionally, differential brain activity patterns were found across hand modalities. The results obtained reveal the existence of a highly specialized network in the dominant hand and identify areas specifically involved in bimanual coordination.


2020 ◽  
pp. 1-86
Author(s):  
Matthew Masapollo ◽  
Jennifer A. Segawa ◽  
Deryk S. Beal ◽  
Jason A. Tourville ◽  
Alfonso Nieto-Castañón ◽  
...  

Stuttering is a neurodevelopmental disorder characterized by impaired production of coordinated articulatory movements needed for fluent speech. It is currently unknown whether these abnormal production characteristics reflect disruptions to brain mechanisms underlying the acquisition and/or execution of speech motor sequences. To dissociate learning and control processes, we used a motor sequence learning paradigm to examine the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters (e.g., “gvasf”) over two days. The behavioral results indicated that although the two experimental groups showed comparable learning trajectories, AWS performed significantly worse on the task prior to and after speech motor practice. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with in-scanner mean disfluency in AWS. Collectively, these findings demonstrate that AWS exhibit no deficit in constructing new speech motor sequences but do show impaired execution of these sequences before and after they have been acquired and consolidated.


2006 ◽  
Vol 17 (5) ◽  
pp. 1227-1234 ◽  
Author(s):  
F. T. Sun ◽  
L. M. Miller ◽  
A. A. Rao ◽  
M. D'Esposito

2020 ◽  
Author(s):  
Matthew Masapollo ◽  
Frank H H Guenther

Stuttering is a neurodevelopmental disorder characterized by impaired production of coordinated articulatory movements needed for fluent speech. It is currently unknown whether these abnormal production characteristics reflect disruptions to brain mechanisms underlying the acquisition and/or execution of speech motor sequences. To dissociate learning and control processes, we used a motor sequence learning paradigm to examine the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters (e.g., “gvasf”) over two days. The behavioral results indicated that although the two experimental groups showed comparable learning trajectories, AWS performed significantly worse on the task prior to and after speech motor practice. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with in-scanner mean disfluency in AWS. Collectively, these findings demonstrate that AWS exhibit no deficit in constructing new speech motor sequences but do show impaired execution of these sequences before and after they have been acquired and consolidated.


2014 ◽  
Vol 41 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Laura Bonzano ◽  
Eleonora Palmaro ◽  
Roxana Teodorescu ◽  
Lazar Fleysher ◽  
Matilde Inglese ◽  
...  

NeuroImage ◽  
2010 ◽  
Vol 49 (1) ◽  
pp. 694-702 ◽  
Author(s):  
Pierre Orban ◽  
Philippe Peigneux ◽  
Ovidiu Lungu ◽  
Geneviève Albouy ◽  
Estelle Breton ◽  
...  

Author(s):  
Mary Alison ◽  
Wens Vincent ◽  
Op De Beeck Marc ◽  
Leproult Rachel ◽  
De Tiège Xavier ◽  
...  

2016 ◽  
Vol 31 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Katie P. Wadden ◽  
Kristopher De Asis ◽  
Cameron S. Mang ◽  
Jason L. Neva ◽  
Sue Peters ◽  
...  

Background. Conventionally, change in motor performance is quantified with discrete measures of behavior taken pre- and postpractice. As a high degree of movement variability exists in motor performance after stroke, pre- and posttesting of motor skill may lack sensitivity to predict potential for motor recovery. Objective. Evaluate the use of predictive models of motor learning based on individual performance curves and clinical characteristics of motor function in individuals with stroke. Methods. Ten healthy and fourteen individuals with chronic stroke performed a continuous joystick-based tracking task over 6 days, and at a 24-hour delayed retention test, to assess implicit motor sequence learning. Results. Individuals with chronic stroke demonstrated significantly slower rates of improvements in implicit sequence-specific motor performance compared with a healthy control (HC) group when root mean squared error performance data were fit to an exponential function. The HC group showed a positive relationship between a faster rate of change in implicit sequence-specific motor performance during practice and superior performance at the delayed retention test. The same relationship was shown for individuals with stroke only after accounting for overall motor function by including Wolf Motor Function Test rate in our model. Conclusion. Nonlinear information extracted from multiple time points across practice, specifically the rate of motor skill acquisition during practice, relates strongly with changes in motor behavior at the retention test following practice and could be used to predict optimal doses of practice on an individual basis.


2016 ◽  
Vol 38 (2) ◽  
pp. 923-937 ◽  
Author(s):  
Alison Mary ◽  
Vincent Wens ◽  
Marc Op de Beeck ◽  
Rachel Leproult ◽  
Xavier De Tiège ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document