scholarly journals Mass Spectrometry Imaging for Glycome in the Brain

2021 ◽  
Vol 15 ◽  
Author(s):  
Md. Mahmudul Hasan ◽  
Mst. Afsana Mimi ◽  
Md. Al Mamun ◽  
Ariful Islam ◽  
A. S. M. Waliullah ◽  
...  

Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.

2021 ◽  
Vol 7 (2) ◽  
pp. eabe5948
Author(s):  
Elva Fridjonsdottir ◽  
Reza Shariatgorji ◽  
Anna Nilsson ◽  
Theodosia Vallianatou ◽  
Luke R. Odell ◽  
...  

l-DOPA treatment for Parkinson’s disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA–induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.


2020 ◽  
Author(s):  
Heather Hulme ◽  
Lynsey M. Meikle ◽  
Nicole Strittmatter ◽  
John Swales ◽  
Gregory Hamm ◽  
...  

AbstractBackgroundThe gut microbiota is known to influence virtually all facets of human health. Recent work has highlighted a potential role for the gut microbiota in neurological health through the microbiome-gut-brain axis. Microbes can influence the brain both directly and indirectly; through neurotransmitter production, induction of host immunomodulators, or through the release or induction of other microbial or host molecules.MethodsHere we used mass spectrometry imaging (MSI), a label-free imaging tool, to map the molecular changes that occur in the murine gut and brain in germ-free, antibiotic-treated and control mice.ResultsWe determined the spatial distribution and relative quantification of neurotransmitters and their precursors across brain and gut sections in response to the microbiome. Using untargeted MSI of small molecules, we detected a significant change in the levels of four identified metabolites in the brains of germ-free animals compared to controls; vitamin B5, 3-hydroxy-3-methylglutaric acid, 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate. However, antibiotic treatment induced no significant changes in these metabolites in the brain after one week of treatment.ConclusionsThis work exemplifies the utility of MSI as a tool in determining the spatial distribution and quantification of bacterial and host metabolites in the gut and brain whilst also offering the potential for discovery of novel mediators of microbiome-gut-brain axis communication.


2020 ◽  
Author(s):  
Roberto Angelini ◽  
Eylan Yutuc ◽  
Mark F Wyatt ◽  
Jillian Newton ◽  
Fowzi Adam Yusuf ◽  
...  

SummaryDespite being a critical molecule for neurobiology and brain health, mass spectrometry imaging (MSI) of cholesterol has been under reported compared to other lipids, due to the difficulty in ionising the sterol molecule. In the present work we have employed an on-tissue enzyme-assisted derivatisation strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific brain structures of the mouse brain, in a model of Niemann-Pick type C1 (NPC1) disease, and during brain development. MSI revealed how cholesterol changes during development and that in the adult is highest in pons and medulla of the brain stem. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.


2021 ◽  
Author(s):  
Jens Habenstein ◽  
Franziska Schmitt ◽  
Sander Liessem ◽  
Alice Ly ◽  
Dennis Trede ◽  
...  

2015 ◽  
Vol 21 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Richard J. A. Goodwin ◽  
Anna Nilsson ◽  
C. Logan Mackay ◽  
John G. Swales ◽  
Maria K. Johansson ◽  
...  

Mass spectrometry imaging (MSI) provides pharmaceutical researchers with a suite of technologies to screen and assess compound distributions and relative abundances directly from tissue sections and offer insight into drug discovery–applicable queries such as blood-brain barrier access, tumor penetration/retention, and compound toxicity related to drug retention in specific organs/cell types. Label-free MSI offers advantages over label-based assays, such as quantitative whole-body autoradiography (QWBA), in the ability to simultaneously differentiate and monitor both drug and drug metabolites. Such discrimination is not possible by label-based assays if a drug metabolite still contains the radiolabel. Here, we present data exemplifying the advantages of MSI analysis. Data of the distribution of AZD2820, a therapeutic cyclic peptide, are related to corresponding QWBA data. Distribution of AZD2820 and two metabolites is achieved by MSI, which [14C]AZD2820 QWBA fails to differentiate. Furthermore, the high mass-resolving power of Fourier transform ion cyclotron resonance MS is used to separate closely associated ions.


2018 ◽  
Author(s):  
Eylan Yutuc ◽  
Roberto Angelini ◽  
Mark Baumert ◽  
Natalia Mast ◽  
Irina Pikuleva ◽  
...  

AbstractDysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatisation in combination with micro-liquid-extraction for surface analysis and liquid chromatography - mass spectrometry to image sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400 µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low abundance and difficult to ionise sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild type and cholesterol 24S-hydroxylase knock-out mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.SignificanceThe brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions, however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry imaging platform to reveal spatial cholesterol metabolism in situ at 400 µm resolution on 10 µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24-hydroxylase (Cyp46a1), the major cholesterol metabolising enzyme.


Author(s):  
Panagiotis G. Simos ◽  
Susan M. Bowyer ◽  
Kyousuke Kamada

This chapter explores the applications of magnetoencephalography (MEG) to the study of the brain mechanisms for language functions. Language mapping with MEG has proved helpful in presurgical estimates of the location and extent of language-related cortex as well as in the intraoperative identification of these cortical patches. In fact, in several neurosurgical centers around the world, such assessments are part of the protocol of surgical interventions, especially in the case of epilepsy. Moreover, MEG alone or in combination with other imaging methods, such as functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS), is extensively used for the testing of alternative models of cortical organization for language in normal populations. However, applications of MEG to language mapping face most of the limitations that characterize brain imaging techniques relying on hemodynamic measures. Perhaps the most fundamental of these limitations concerns the degree of specificity of results: Activation profiles feature brain regions that may not be indispensable for a particular target function. This problem is particularly serious in the case of language mapping and to a lesser degree in motor cortex mapping.


Author(s):  
Daisy Unsihuay ◽  
Daniela Mesa Sanchez ◽  
Julia Laskin

Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document