scholarly journals Wearable Reduced-Channel EEG System for Remote Seizure Monitoring

2021 ◽  
Vol 12 ◽  
Author(s):  
Mitchell A. Frankel ◽  
Mark J. Lehmkuhle ◽  
Mark C. Spitz ◽  
Blake J. Newman ◽  
Sindhu V. Richards ◽  
...  

Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography (EEG) sensor. Four Epilog sensors are combined as part of Epitel's Remote EEG Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring. REMI is designed to provide comprehensive spatial EEG recordings that can be administered by non-specialized medical personnel in any medical center. The purpose of this study was to determine how accurate epileptologists are at remotely reviewing Epilog sensor EEG in the 10-channel “REMI montage,” with and without seizure detection support software. Three board certified epileptologists reviewed the REMI montage from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists randomly reviewed the same datasets with and without clinical decision support annotations from an automated seizure detection algorithm tuned to be highly sensitive. Blinded consensus review of unannotated Epilog EEG in the REMI montage detected people who were experiencing electrographic seizure activity with 90% sensitivity and 90% specificity. Consensus detection of individual focal onset seizures resulted in a mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002 false positives per hour (FP/h) of data. With algorithm seizure detection annotations, the consensus review mean sensitivity improved to 68% with a slight increase in FDR (0.005 FP/h). As seizure detection software, the automated algorithm detected people who were experiencing electrographic seizure activity with 100% sensitivity and 70% specificity, and detected individual focal onset seizures with a mean sensitivity of 90% and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists' ability to blindly review EEG from four Epilog sensors in the REMI montage, and the results demonstrate the clinical potential to accurately identify patients experiencing electrographic seizures. Additionally, the automated algorithm shows promise as clinical decision support software to detect discrete electrographic seizures in individual records as accurately as FDA-cleared predicates.

2021 ◽  
Vol 12 (01) ◽  
pp. 182-189
Author(s):  
Adam Wright ◽  
Skye Aaron ◽  
Allison B. McCoy ◽  
Robert El-Kareh ◽  
Daniel Fort ◽  
...  

Abstract Objective Clinical decision support (CDS) can contribute to quality and safety. Prior work has shown that errors in CDS systems are common and can lead to unintended consequences. Many CDS systems use Boolean logic, which can be difficult for CDS analysts to specify accurately. We set out to determine the prevalence of certain types of Boolean logic errors in CDS statements. Methods Nine health care organizations extracted Boolean logic statements from their Epic electronic health record (EHR). We developed an open-source software tool, which implemented the Espresso logic minimization algorithm, to identify three classes of logic errors. Results Participating organizations submitted 260,698 logic statements, of which 44,890 were minimized by Espresso. We found errors in 209 of them. Every participating organization had at least two errors, and all organizations reported that they would act on the feedback. Discussion An automated algorithm can readily detect specific categories of Boolean CDS logic errors. These errors represent a minority of CDS errors, but very likely require correction to avoid patient safety issues. This process found only a few errors at each site, but the problem appears to be widespread, affecting all participating organizations. Conclusion Both CDS implementers and EHR vendors should consider implementing similar algorithms as part of the CDS authoring process to reduce the number of errors in their CDS interventions.


2015 ◽  
Vol 22 (e1) ◽  
pp. e13-e20 ◽  
Author(s):  
Gaurav Jay Dhiman ◽  
Kyle T Amber ◽  
Kenneth W. Goodman

Abstract Clinical decision support systems (CDSSs) assist clinicians with patient diagnosis and treatment. However, inadequate attention has been paid to the process of selecting and buying systems. The diversity of CDSSs, coupled with research obstacles, marketplace limitations, and legal impediments, has thwarted comparative outcome studies and reduced the availability of reliable information and advice for purchasers. We review these limitations and recommend several comparative studies, which were conducted in phases; studies conducted in phases and focused on limited outcomes of safety, efficacy, and implementation in varied clinical settings. Additionally, we recommend the increased availability of guidance tools to assist purchasers with evidence-based purchases. Transparency is necessary in purchasers’ reporting of system defects and vendors’ disclosure of marketing conflicts of interest to support methodologically sound studies. Taken together, these measures can foster the evolution of evidence-based tools that, in turn, will enable and empower system purchasers to make wise choices and improve the care of patients.


Sign in / Sign up

Export Citation Format

Share Document