scholarly journals Post-concussive mTBI in Student Athletes: MRI Features and Machine Learning

2022 ◽  
Vol 12 ◽  
Author(s):  
José Tamez-Peña ◽  
Peter Rosella ◽  
Saara Totterman ◽  
Edward Schreyer ◽  
Patricia Gonzalez ◽  
...  

Purpose: To determine and characterize the radiomics features from structural MRI (MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild traumatic brain injuries on student athletes with post-concussive syndrome (PCS).Material and Methods: 122 student athletes (65 M, 57 F), median (IQR) age 18.8 (15–20) years, with a mixed level of play and sports activities, with a known history of concussion and clinical PCS, and 27 (15 M, 12 F), median (IQR) age 20 (19, 21) years, concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE and DTI-FA and DTI-ADC images were used to extract radiomic features from white and gray matter regions within the entire brain (2 ROI) and the eight main lobes of the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided into five different data sets used to train and cross-validate five different filter-based Support Vector Machines. The top selected features of the top model were described. Furthermore, the test predictions of the top four models were ensembled into a single average prediction. The average prediction was evaluated for the association to the number of concussions and time from injury.Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88] and specificity of 0.74 95%CI [0.54, 0.89] for distinguishing subjects from controls. The white matter features were strongly associated with mTBI, while the whole-brain analysis of gray matter showed the worst association. The predictive index was significantly associated with the number of concussions (p < 0.0001) and associated with the time from injury (p < 0.01).Conclusion: MRI Radiomic features are associated with a history of mTBI and they were successfully used to build a predictive machine learning model for mTBI for subjects with PCS associated with a history of one or more concussions.

2018 ◽  
Vol 28 (02) ◽  
pp. 1750036 ◽  
Author(s):  
Shuqiang Wang ◽  
Yong Hu ◽  
Yanyan Shen ◽  
Hanxiong Li

In this study, we propose an automated framework that combines diffusion tensor imaging (DTI) metrics with machine learning algorithms to accurately classify control groups and groups with cervical spondylotic myelopathy (CSM) in the spinal cord. The comparison between selected voxel-based classification and mean value-based classification were performed. A support vector machine (SVM) classifier using a selected voxel-based dataset produced an accuracy of 95.73%, sensitivity of 93.41% and specificity of 98.64%. The efficacy of each index of diffusion for classification was also evaluated. Using the proposed approach, myelopathic areas in CSM are detected to provide an accurate reference to assist spine surgeons in surgical planning in complicated cases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gang Liu ◽  
Yanan Gao ◽  
Ying Liu ◽  
Yaomin Guo ◽  
Zhicong Yan ◽  
...  

Accumulating diffusion tensor imaging (DTI) evidence suggests that white matter abnormalities evaluated by local diffusion homogeneity (LDH) or fractional anisotropy (FA) occur in patients with blepharospasm (BSP), both of which are significantly correlated with disease severity. However, whether the individual severity of BSP can be identified using these DTI metrics remains unknown. We aimed to investigate whether a combination of machine learning techniques and LDH or FA can accurately identify the individual severity of BSP. Forty-one patients with BSP were assessed using the Jankovic Rating Scale and DTI. The patients were assigned to non-functionally and functionally limited groups according to their Jankovic Rating Scale scores. A machine learning scheme consisting of beam search and support vector machines was designed to identify non-functionally versus functionally limited outcomes, with the input features being LDH or FA in 68 white matter regions. The proposed machine learning scheme with LDH or FA yielded an overall accuracy of 88.67 versus 85.19% in identifying non-functionally limited versus functionally limited outcomes. The scheme also identified a sensitivity of 91.40 versus 85.87% in correctly identifying functionally limited outcomes, a specificity of 83.33 versus 83.67% in accurately identifying non-functionally limited outcomes, and an area under the curve of 93.7 versus 91.3%. These findings suggest that a combination of LDH or FA measurements and a sophisticated machine learning scheme can accurately and reliably identify the individual disease severity in patients with BSP.


Author(s):  
Syed Saad Amer ◽  
Gurleen Wander ◽  
Manmeet Singh ◽  
Rami Bahsoon ◽  
Nicholas R. Jennings ◽  
...  

Heart disease kills more people around the world than any other disease, and it is one of the leading causes of death in the UK, triggering up to 74,000 deaths per year. An essential part in the prevention of deaths by heart disease and thus heart disease itself is the analysis of biomedical markers to determine the risk of a person developing heart disease. Lots of research has been conducted to assess the accuracy of detecting heart disease by analyzing biomedical markers. However, no previous study has attempted to identify the biomedical markers which are most important in this identification. To solve this problem, we proposed a machine learning-based intelligent heart disease prediction system called BioLearner for the determination of vital biomedical markers. This study aims to improve upon the accuracy of predicting heart disease and identify the most essential biological markers. This is done with the intention of composing a set of markers that impacts the development of heart disease the most. Multiple factors determine whether or not a person develops heart disease. These factors are thought to include Age, history of chest pain (of different types), fasting blood sugar of different types, heart rate, smoking, and other essential factors. The dataset is analyzed, and the different aspects are compared. Various machine learning models such as [Formula: see text] Nearest Neighbours, Neural Networks, Support Vector Machine (SVM) are trained and used to determine the accuracy of our prediction for future heart disease development. BioLearner is able to predict the risk of heart disease with an accuracy of 95%, much higher than the baseline methods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thomas D. Kocar ◽  
Anna Behler ◽  
Albert C. Ludolph ◽  
Hans-Peter Müller ◽  
Jan Kassubek

The potential of multiparametric quantitative neuroimaging has been extensively discussed as a diagnostic tool in amyotrophic lateral sclerosis (ALS). In the past, the integration of multimodal, quantitative data into a useful diagnostic classifier was a major challenge. With recent advances in the field, machine learning in a data driven approach is a potential solution: neuroimaging biomarkers in ALS are mainly observed in the cerebral microstructure, with diffusion tensor imaging (DTI) and texture analysis as promising approaches. We set out to combine these neuroimaging markers as age-corrected features in a machine learning model with a cohort of 502 subjects, divided into 404 patients with ALS and 98 healthy controls. We calculated a linear support vector classifier (SVC) which is a very robust model and then verified the results with a multilayer perceptron (MLP)/neural network. Both classifiers were able to separate ALS patients from controls with receiver operating characteristic (ROC) curves showing an area under the curve (AUC) of 0.87–0.88 (“good”) for the SVC and 0.88–0.91 (“good” to “excellent”) for the MLP. Among the coefficients of the SVC, texture data contributed the most to a correct classification. We consider these results as a proof of concept that demonstrated the power of machine learning in the application of multiparametric quantitative neuroimaging data to ALS.


2020 ◽  
Author(s):  
Hiba Abuelgasim Fadlelmoula Abdelrahman ◽  
Shiho Ubukata ◽  
Keita Ueda ◽  
Gaku Fujimoto ◽  
Naoya Oishi ◽  
...  

Abstract Background: Diffusion tensor imaging (DTI) indices provide quantitative measures of white matter microstructural changes following traumatic brain injury (TBI). However, there is still insufficient evidence for their use as predictive measures. Recently, there has been growing interest in using machine learning (ML) approaches to aid the diagnosis of many neurological and psychiatric illnesses including TBI. The aim of this study is to examine the potential of using multiple DTI indices in conjunction with ML to automate the classification of healthy subjects and patients with TBI across a spectrum of TBI severity.Methods: Participants were adult patients with chronic TBI (n=26) and age and gender-matched healthy controls (n=26). DTI images were obtained from all the participants. Tract-based spatial statistics (TBSS) analysis was applied to the DTI images. Classification models were built using principle component analysis (PCA) and support vector machines (SVM). Receiver operator characteristic (ROC) curve analysis and area under the curve (AUC) were used to assess the classification performance of the different classifiers.Results: The whole-brain white matter TBSS analyses showed significantly decreased FA, as well as increased MD, AD, and RD in TBI patients compared with healthy controls (all p-value < 0.01). The PCA and SVM-based ML classification using combined DTI indices classified TBI patients and healthy controls with the accuracy of 90.5% with an area under the curve (AUC) of 93 +/- 0.09.Conclusion: This study demonstrates the potential of a joint DTI and ML approach for objective classification of TBI patients and healthy controls.


Compute Clusters are typically installed to increase performance and/or accessibility. Appropriate Resource Provisioning is a key feature in clustered computing environments to avoid provisioning resources lower than the actual requirement and provisioning of resources in excess. In this paper, a load balancing scheme leading to effective provisioning of resources have been proposed. Job History of compute-intensive jobs have been collected by conducting experiments to observe basic parameters of a job in a heterogeneous computing cluster environment. A Machine Learning model using Multi-Layer Perceptron and Support Vector Machine for provisioning of resources has been presented. The prediction model uses the job history collected from the cluster environment to predict the resource that would be appropriate for provisioning in future. The accuracy of the model is computed and the results of experiments show that Multi-Layer Perceptron presents a better performance than Support Vector Machine


2020 ◽  
pp. 1-19
Author(s):  
Lan Deng ◽  
Yuanjun Wang

BACKGROUND: Effective detection of Alzheimer’s disease (AD) is still difficult in clinical practice. Therefore, establishment of AD detection model by means of machine learning is of great significance to assist AD diagnosis. OBJECTIVE: To investigate and test a new detection model aiming to help doctors diagnose AD more accurately. METHODS: Diffusion tensor images and the corresponding T1w images acquired from subjects (AD = 98, normal control (NC) = 100) are used to construct brain networks. Then, 9 types features (198×90×9 in total) are extracted from the 3D brain networks by a graph theory method. Features with low correction in both groups are selected through the Pearson correlation analysis. Finally, the selected features (198×33, 198×26, 198×30, 198×42, 198×36, 198×23, 198×29, 198×14, 198×25) are separately used into train 3 machine learning classifier based detection models in which 60% of study subjects are used for training, 20% for validation and 20% for testing. RESULTS: The best detection accuracy levels of 3 models are 90%, 98% and 90% with the corresponding sensitivity of 92%, 96%, and 72% and specificity of 88%, 100% and 94% when using a random forest classifier trained with the Shortest Path Length (SPL) features (198×14), a support vector machine trained with the Degree Centrality features (198×33), and a convolution neural network trained with SPL features, respectively. CONCLUSIONS: This study demonstrates that the new method and models not only improve the accuracy of detecting AD, but also avoid bias caused by the method of direct dimensionality reduction from high dimensional data.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document