scholarly journals Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury

2022 ◽  
Vol 12 ◽  
Author(s):  
Heather R. Siedhoff ◽  
Shanyan Chen ◽  
Hailong Song ◽  
Jiankun Cui ◽  
Ibolja Cernak ◽  
...  

Most traumatic brain injuries (TBIs) during military deployment or training are clinically “mild” and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation.

2013 ◽  
Vol 41 (5) ◽  
pp. 1331-1334 ◽  
Author(s):  
Carola Stockburger ◽  
Christopher Kurz ◽  
Konrad A. Koch ◽  
Schamim H. Eckert ◽  
Kristina Leuner ◽  
...  

The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2015 ◽  
Vol 48 (06) ◽  
Author(s):  
H Esselmann ◽  
C Hafermann ◽  
O Jahn ◽  
I Kraus ◽  
J Vogelgsang ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


Sign in / Sign up

Export Citation Format

Share Document